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Longitudinal Medical Images: repeated scanning of the same patient over time 

Temporal Sparsity
Unlike videos (many frames per 

second), these longitudinal images are 

separated by weeks, months or years.

Sampling Irregularity
Irregularly sampled over time for the 

same patient, and different sampling 

schedules among patients. 

Spatial Misalignment

Almost never spatially aligned.
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Methods (1/3): ImageFlowNet predicts future image from earlier 

image and time gap, by learning a vector field of latent features.
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Methods (2/3): The latent features are flowed with ODE or SDE.
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Methods (3/3): Loss components affect different modules.



ImageFlowNetImageFlowNet

Loss components
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Flowed latent features are collected hierarchically to form an image.
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NOTE: We used a novel ODE formulation,

     which we call a position-parameterized ODE. 
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Change of variable to make the comparison more obvious.
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Why the position-parameterized ODE.
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Why the position-parameterized ODE.
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Theoretical Results (1/2)

Equivalent Expressiveness of our ODE and standard ODE.
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Theoretical Results (2/2)

Connection between ImageFlowNet and dynamic optimal transport.
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Empirical Results (1/3): Future Image Forecasting Performance
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Empirical Results (2/3): Latent Space Regularization
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Empirical Results (3/3): Test-Time Optimization

 (Using the entire history to locally fine-tune the vector field)
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Ablation


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

