

ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images

Chen Liu 1* Ke Xu 1* Liangbo L. Shen 2 Guillaume Huguet 3,4 Zilong Wang 3,5 Alexander Tong 3,4§ Danilo Bzdok 3,5§ Jay Stewart 2§ Jay C. Wang 1,2,6§ Lucian V. Del Priore 1§ Smita Krishnaswamy 1§

¹Yale University ²University of California, San Francisco ³Mila - Quebec AI Institute ⁴Université de Montréal ⁵McGill University ⁶Northern California Retina Vitreous Associates

* These authors are joint first authors: {chen.liu.cl2482, k.xu}@yale.edu. § Senior authors. Please direct correspondence to: smita.krishnaswamy@yale.edu or lucian.delpriore@yale.edu.

- Motivation
- Preliminaries
- Methods
 - ImageFlowNet
- Experiments & Results
 - Theoretical Results
 - Empirical Results

- Motivation
- Preliminaries
- Methods
 - ImageFlowNet
- Experiments & Results
 - Theoretical Results
 - Empirical Results

Longitudinal Medical Images: repeated scanning of the same patient over time

Temporal Sparsity

Unlike videos (many frames per second), these longitudinal images are separated by weeks, months or years.

Sampling Irregularity

Irregularly sampled over time for the same patient, and different sampling schedules among patients.

Spatial Misalignment

Almost never spatially aligned.

Fig. 1. Advantages of image-level trajectory inference.

- Motivation
- Preliminaries
- Methods
 - ImageFlowNet
- Experiments & Results
 - Theoretical Results
 - Empirical Results

Neural ODE

$$\frac{\mathrm{d}y(\tau)}{\mathrm{d}\tau} = f_{\theta}(y(\tau), \tau) \qquad (1a)$$

$$y(t_1) = y(t_0) + \int_{t_0}^{t_1} f_{\theta}(y(\tau), \tau) \mathrm{d}\tau \qquad (1b)$$

Parameterize the continuous dynamics of hidden units using an ordinary differential equation (ODE) specified by a neural network

$$y(t_1) = \text{ODESolve}(f(y(t), t, \theta), y(t_0), t_0, t_1)$$

Figure 1: *Left:* A Residual network defines a discrete sequence of finite transformations. *Right:* A ODE network defines a vector field, which continuously transforms the state. *Both:* Circles represent evaluation locations.

Neural ODE

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

adjoint sensitivity method

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$
$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. "Neural ordinary differential equations." Advances in neural information processing systems 31 (2018).

Neural SDE

$$dX_t = f(t, X_t) dt + g(t, X_t) \circ dW_t,$$

 $f(t, X_t) dt$ – deterministic term

 $g(t, X_t) \circ \mathrm{d}W_t$ – stochastic term

- Motivation
- Preliminaries
- Methods
 - ImageFlowNet
- Experiments & Results
 - Theoretical Results
 - Empirical Results

Methods (1/3): ImageFlowNet predicts future image from earlier image and time gap, by learning a vector field of latent features.

Methods (2/3): The latent features are flowed with ODE or SDE.

Methods (3/3): Loss components affect different modules.

 $\lambda_{v},\lambda_{c},\lambda_{s}$: weighting coefficients MSE: pixel-level mean-squared error D_{cos} : cosine distance of vectors $e(\cdot)$: a pre-trained vision encoder ODE: ordinary differential equation SDE: stochastic differential equation

Loss components

$$loss = \underbrace{\frac{1}{HWC} \sum_{h \in H} \sum_{w \in W} \sum_{c \in C} ||\widehat{x_j}[h, w, c] - x_j[h, w, c]||_2^2 + \lambda_v \left(-\frac{e(\widehat{x_j})^\top e(x_j)}{||e(\widehat{x_j})||_2||e(x_j)||_2} \right)}_{\mathbf{3} \ l_c : \ \text{contrastive learning (SimSiam)}} \\ + \lambda_c \left(-\frac{p_d(p_j(z_{t_i}))^\top p_j(z_{t_j})}{2||p_d(p_j(z_{t_i}))||_2||p_j(z_{t_j})||_2} - \frac{p_d(p_j(z_{t_j}))^\top p_j(z_{t_i})}{2||p_d(p_j(z_{t_j}))||_2||p_j(z_{t_j})||_2} \right) + \underbrace{\lambda_s ||f_\theta||_2^2}_{\lambda_s ||f_\theta||_2^2}$$

- 1 Image reconstruction objective is achieved by a MSE loss, attending to low-level features on the pixel level.
- 2 Visual feature regularization guides the network to produce images that resemble the ground truth on high-level features judged by an encoder pretrained on ImageNet [15].
- 3 Contrastive learning regularization organizes a well-structured ImageFlowNet latent space, by encouraging proximity of representations from images within the same longitudinal series, following the SimSiam formulation [16].
- 4 Trajectory smoothness regularization leverages a theorem in convex optimization (Lemma 2.2 in [17]) to enforce smoothness of trajectories by regularizing the norm of the field. Notably, this achieves Lipschitz continuity, satisfying a crucial assumption for our theoretical results.

Flowed latent features are collected hierarchically to form an image.

$$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)}) \quad \text{for } b \in [1, B] \quad \text{(3a)} \quad z_{t_j}^{(b)} = z_{t_i}^{(b)} + \int_{t_i}^{t_j} f_{\theta}^{(b)}(z_{\tau}^{(b)}) \mathrm{d}\tau \quad \text{ for } b \in [1, B] \quad \text{(3b)}$$

$$\begin{split} \widehat{x_j} &= \text{ResBlock}(\text{Concat}(\widetilde{z}_{t_j}^{(2)}, z_{t_j}^{(1)})), \text{ where} \\ \widetilde{z}_{t_j}^{(b)} &= \text{Upsample}(\text{ResBlock}(\text{Concat}(\widetilde{z}_{t_j}^{(b+1)}, z_{t_j}^{(b)}))) \text{ for } b \in [2, B-1], \text{ with } \widetilde{z}_{t_j}^{(B)} = z_{t_j}^{(B)} \end{split}$$

NOTE: We used a novel ODE formulation, which we call a *position-parameterized* ODE.

$$\frac{\mathrm{d}y(\tau)}{\mathrm{d}\tau} = f_{\theta}(y(\tau), \tau)$$

Standard ODE

$$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)})$$

Our ODE

Change of variable to make the comparison more obvious.

$$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)}, \tau)$$

Standard ODE

$$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)})$$

Our ODE

Why the position-parameterized ODE.

A bigger field to learn

$$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)}, \tau)$$

Parameterization by "time"

$$rac{\mathrm{d} z_{ au}^{(b)}}{\mathrm{d} au} = f_{ heta}^{(b)}(z_{ au}^{(b)})$$

Parameterization by "position"

Why the position-parameterized ODE.

- Motivation
- Preliminaries
- Methods
 - ImageFlowNet
- Experiments & Results
 - Theoretical Results
 - Empirical Results

Theoretical Results (1/2)

Equivalent Expressiveness of our ODE and standard ODE.

Proposition IV.1. Let f_{θ} be a continuous function that satisfies the Lipschitz continuity and linear growth conditions. Also, let the initial state $y(t_0) = y_0$ satisfy the finite second moment requirement. Suppose $z(t_0)$ is the latent representation learned by ImageFlowNet in the initial state corresponding to t_0 . Then, our neural ODEs are at least as expressive as the original neural ODEs, and their solutions capture the same dynamics.

Theoretical Results (2/2)

Connection between ImageFlowNet and dynamic optimal transport.

Proposition IV.2. If we consider an image as a distribution over a 2D grid, ImageFlowNet is equivalently solving a dynamic optimal transport problem, as it meets 3 essential criteria: (1) matching the density, (2) smoothing the dynamics, and (3) minimizing the transport cost, where the ground distance is the Euclidean distance in the latent joint embedding space.

Empirical Results (1/3): Future Image Forecasting Performance

Datasets:

- Retinal geographic atrophy
 - a. 2-5 years
 - b. <24 month gap
- 2. Brain multiple sclerosis
 - a. ~5 years
 - b. ~4.4 time points per person
- 3. Brain glioblastoma
 - a. <5 years
 - b. 2-18 time points per person

Table 1: Image forecasting performance: $metric(x_j, \widehat{x_j})$. $\widehat{x_j} = \mathcal{F}(x_i, t_i, t_j), \forall i < j$. †Extrapolation methods use the entire history. "++" means using the 3 regularizations in Eqn (6).

Dataset	Metric	Linear [†] [24]	Cubic Spline [†] [25]	T-UNet [33]	T-Diffusion [28]	ImageFlowNet _{ODE} (ours)	ImageFlowNet _{ODE} ++ (ours)	ImageFlowNet _{SDE} (ours)	ImageFlowNet _{SDE} + (ours)
Retinal Images	PSNR ↑ SSIM ↑	$20.22 \pm 0.00 \\ 0.535 \pm 0.000$	$19.79 \pm 0.00 \\ 0.505 \pm 0.000$	22.06 ± 0.33 0.635 ± 0.015	22.29 ± 0.33 0.624 ± 0.016	22.63 ± 0.26 0.646 ± 0.012	$\frac{22.74}{0.647\pm0.013}$	22.32± 0.29 0.651 ± 0.015	22.89 ± 0.28 0.651 ± 0.012
all	MAE ↓	0.353 ± 0.000 0.163 ± 0.000	0.303 ± 0.000 0.177 ± 0.000	0.033 ± 0.013 0.126 ± 0.005	0.024 ± 0.016 0.122 ± 0.004	0.040 ± 0.012 0.119 ± 0.004	0.047 ± 0.013 0.118 ± 0.004	0.124 ± 0.005	0.031 ± 0.012 0.115 ± 0.004
cases	MSE \	0.050 ± 0.000	0.060 ± 0.000	0.029 ± 0.002	0.027 ± 0.004	0.024 ± 0.004	0.024 ± 0.001	0.027 ± 0.002	0.023 ± 0.004
1	DSC ↑	0.833 ± 0.000	0.756 ± 0.000	0.872 ± 0.002	0.867 ± 0.002	0.874 ± 0.012	0.873 ± 0.001	0.885 ± 0.011	0.883 ± 0.001
	HD↓	51.64 ± 0.00	54.30 ± 0.00	$44.59 \!\pm 4.66$	44.41 ± 4.74	42.68 ± 4.82	47.10± 4.89	48.14± 4.87	45.14 ± 4.89
ninor	PSNR ↑	21.36± 0.00	21.08± 0.00	22.56± 0.55	22.99± 0.55	23.23± 0.34	23.44± 0.33	23.28 ± 0.36	23.63 ± 0.43
atrophy	SSIM ↑	0.599 ± 0.000	0.586 ± 0.000	0.662 ± 0.023	0.657 ± 0.024	0.682 ± 0.018	0.685 ± 0.018	0.693 ± 0.018	0.687 ± 0.019
growth	MAE↓	0.141 ± 0.000	0.147 ± 0.000	0.121 ± 0.007	0.114 ± 0.007	0.110 ± 0.005	0.108 ± 0.004	0.109 ± 0.005	0.106 ± 0.005
2	MSE ↓	0.038 ± 0.000	0.042 ± 0.000	0.027 ± 0.003	0.024 ± 0.002	0.021 ± 0.002	0.020 ± 0.002	0.021 ± 0.002	0.020 ± 0.002
	DSC ↑	0.900 ± 0.000	0.874 ± 0.000	0.949 ± 0.004	0.949 ± 0.004	0.936 ± 0.009	0.939 ± 0.007	0.948 ± 0.005	0.948 ± 0.006
	HD↓	$38.15 {\pm}~0.00$	41.67 ± 0.00	35.74 ± 5.67	29.40 ± 4.77	$34.59 {\pm}~6.20$	39.86 ± 6.40	31.66 ± 5.21	36.98 ± 6.04
major	PSNR ↑	$19.02 {\pm}~0.00$	18.41 ± 0.00	$21.40 \pm \text{ 0.33}$	$21.68 \!\pm 0.32$	21.94 ± 0.34	22.01 ± 0.33	22.01 ± 0.30	$22.10 \!\pm 0.31$
atrophy	SSIM ↑	0.468 ± 0.000	0.420 ± 0.000	0.607 ± 0.017	0.588 ± 0.017	0.607 ± 0.014	0.606 ± 0.014	0.607 ± 0.014	0.613 ± 0.013
growth	MAE ↓	0.186 ± 0.000	0.210 ± 0.000	0.135 ± 0.006	0.131 ± 0.006	0.129 ± 0.006	0.129 ± 0.006	0.128 ± 0.005	0.126 ± 0.005
3	$MSE \downarrow$	0.063 ± 0.000	0.080 ± 0.000	0.032 ± 0.003	0.030 ± 0.002	0.028 ± 0.002	0.028 ± 0.002	0.027 ± 0.002	0.027 ± 0.002
	DSC ↑	0.762 ± 0.000	0.631 ± 0.000	0.784 ± 0.016	0.779 ± 0.019	0.807 ± 0.014	0.803 ± 0.012	0.817 ± 0.016	0.814 ± 0.017
	HD↓	65.97 ± 0.00	67.73 ± 0.00	61.43 ± 7.26	60.36 ± 7.37	51.28 ± 7.13	54.79 ± 7.19	65.65 ± 7.17	53.81 ± 7.49
Brain	PSNR ↑	$30.07 \!\pm 0.00$	29.56 ± 0.00	$31.55 \!\pm 0.20$	31.57 ± 0.23	32.01 ± 0.19	32.34 ± 0.20	32.40 ± 0.20	32.41 ± 0.20
MS	SSIM ↑	$0.895 \!\pm 0.000$	0.888 ± 0.000	0.909 ± 0.003	0.907 ± 0.003	0.914 ± 0.002	0.915 ± 0.002	0.913 ± 0.002	0.915 ± 0.002
lmages	$MAE \downarrow$	0.028 ± 0.000	0.030 ± 0.000	0.024 ± 0.000	0.024 ± 0.001	0.023 ± 0.000	0.021 ± 0.000	0.021 ± 0.000	0.021 ± 0.000
4	$MSE \downarrow$	0.004 ± 0.000	0.005 ± 0.000	0.004 ± 0.000	0.004 ± 0.000	0.003 ± 0.000	0.003 ± 0.000	0.003 ± 0.000	0.003 ± 0.000
	DSC ↑	0.739 ± 0.000	0.682 ± 0.000	0.774 ± 0.007	0.771 ± 0.007	0.775 ± 0.007	0.777 ± 0.007	0.777 ± 0.007	0.774 ± 0.007
	HD↓	22.73 ± 0.00	26.23 ± 0.00	22.00 ± 1.30	20.91 ± 1.23	22.38 ± 1.28	21.72± 1.16	22.21 ± 1.27	<u>21.28</u> ± 1.27
Brain	PSNR ↑	$35.32 {\pm}~0.00$	33.60 ± 0.00	35.73 ± 0.13	35.49 ± 0.17	35.86 ± 0.12	35.90 ± 0.14	35.77 ± 0.12	$35.79 \!\pm 0.15$
GBM	SSIM ↑	0.929 ± 0.000	0.895 ± 0.000	0.935 ± 0.001	0.940 ± 0.001	0.940 ± 0.001	0.943 ± 0.001	0.937 ± 0.001	0.939 ± 0.001
Images	$MAE \downarrow$	0.017 ± 0.000	0.024 ± 0.000	0.015 ± 0.000	0.014 ± 0.000	0.014 ± 0.000	0.014 ± 0.000	0.015 ± 0.000	0.015 ± 0.000
5	MSE ↓	0.002 ± 0.000	0.005 ± 0.000	0.001 ± 0.000	0.002 ± 0.000	0.001 ± 0.000	0.001 ± 0.000	0.001 ± 0.000	0.001 ± 0.000
	DSC ↑	0.300 ± 0.000	0.287 ± 0.000	0.258 ± 0.018	0.253 ± 0.017	0.302 ± 0.019	0.266 ± 0.018	0.286 ± 0.019	$0.287 \!\pm 0.017$
	HD↓	170.44 ± 0.00	165.62 ± 0.00	195.52 ± 7.69	189.61 ± 7.64	198.19± 7.78	185.14 ± 7.69	196.37 ± 7.74	181.66± 7.66
1, 4, 5	Rank ↓	6.3 ± 1.6	7.3 \pm 2.0	$4.9 \scriptstyle{\pm 1.4}$	4.6± 1.9	2.9± 1.9	2.3± 1.6	3.4±2.0	2.1 ± 1.3
1, 2, 3, 4, 5	Rank ↓	6.5 ± 1.3	7.6 ± 1.5	4.9 ± 1.5	$4.5 \scriptstyle{\pm 1.8}$	3.1 ± 1.6	$2.7_{\pm 1.7}$	$3.0 {\scriptstyle \pm 1.8}$	2.0 ± 1.2

Empirical Results (2/3): Latent Space Regularization

Figure 4: Joint representation space and the effect of contrastive learning regularization. Red dots are the observed disease states and arrows connect adjacent transitions. Normalized time is color coded. (A) Without regularization ($\lambda_c = 0$). (B) With contrastive learning regularization ($\lambda_c = 0.01$).

Empirical Results (3/3): Test-Time Optimization (Using the entire history to locally fine-tune the vector field)

Table 2: Effect of test-time optimization.

Iterations	Learning Rate	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	HD↓
N/A	N/A	22.31	0.643	0.123	0.027	0.827	51.07
1	10^{-4}	22.52	0.646	0.120	0.025	0.829	48.97
1	10^{-5}	22.36	0.643	0.122	0.027	0.827	51.02
1	10^{-6}	22.31	0.643	0.123	0.027	0.827	51.07
10	10^{-4}	20.63	0.605	0.157	0.042	0.749	64.79
10	10^{-5}	22.59	0.646	0.119	0.025	0.829	49.92
10	10^{-6}	22.36	0.644	0.122	0.027	0.827	51.01
100	10^{-4}	19.63	0.571	0.177	0.056	0.726	70.12
100	10^{-5}	20.92	0.614	0.152	0.040	0.759	58.76
100	10^{-6}	22.61	0.646	0.119	0.025	0.829	<u>49.74</u>

Ablation

TABLE II
FLOW FIELD FORMULATION.

	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	HD↓
$f_{ heta}(z_t,t)$	22.42	0.643	0.123	0.027	0.872	48.38
$f_{ heta}(z_t)$	22.63	0.646	0.119	0.024	0.874	42.68

TABLE III
LATENT REPRESENTATION.

	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	$HD\downarrow$
bottleneck only	22.33	0.639	0.122	0.026	0.850	48.13
all unique resolutions	22.49	0.643	0.122	0.025	0.859	43.39
all unique layers	22.63	0.646	0.119	0.024	0.874	42.68

TABLE IV
VISUAL FEATURE REGULARIZATION.

λ_v	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	HD↓
0	22.63	0.646	0.119	0.024	0.874	42.68
0.001	22.65	0.658	0.118	0.024	0.872	44.27
0.01	22.64	0.650	0.120	0.025	0.872	45.89
0.1	22.57	0.647	0.120	0.025	0.869	50.69
1	22.54	0.634	0.124	0.027	0.867	48.13

TABLE V
CONTRASTIVE REGULARIZATION.

λ_c	PSNR↑	SSIM↑	$MAE\downarrow$	$MSE\!\!\downarrow$	DSC↑	$HD\downarrow$
0	22.63	0.646	0.119	0.024	0.874	42.68
0.001	22.63	0.646	0.119	0.025	0.872	46.23
0.01	22.65	0.652	0.118	0.024	0.875	42.18
0.1	22.38	0.651	0.121	0.025	0.871	45.30
1	22.25	0.644	0.121	0.025	0.868	46.85

TABLE VI SMOOTHNESS REGULARIZATION.

λ_s	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	$HD\downarrow$
0	22.63	0.646	0.119	0.024	0.874	42.68
0.001	22.38	0.649	0.123	0.027	0.870	46.91
0.01	22.65	0.648	0.119	0.024	0.870	45.71
0.1	22.70	0.657	0.118	0.024	0.878	47.44
1	22.69	0.655	0.118	0.024	0.875	45.16