ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images Chen Liu 1* Ke Xu 1* Liangbo L. Shen 2 Guillaume Huguet 3,4 Zilong Wang 3,5 Alexander Tong 3,4§ Danilo Bzdok 3,5§ Jay Stewart 2§ Jay C. Wang 1,2,6§ Lucian V. Del Priore 1§ Smita Krishnaswamy 1§ ¹Yale University ²University of California, San Francisco ³Mila - Quebec AI Institute ⁴Université de Montréal ⁵McGill University ⁶Northern California Retina Vitreous Associates * These authors are joint first authors: {chen.liu.cl2482, k.xu}@yale.edu. § Senior authors. Please direct correspondence to: smita.krishnaswamy@yale.edu or lucian.delpriore@yale.edu. - Motivation - Preliminaries - Methods - ImageFlowNet - Experiments & Results - Theoretical Results - Empirical Results - Motivation - Preliminaries - Methods - ImageFlowNet - Experiments & Results - Theoretical Results - Empirical Results Longitudinal Medical Images: repeated scanning of the same patient over time #### **Temporal Sparsity** Unlike videos (many frames per second), these longitudinal images are separated by weeks, months or years. ### **Sampling Irregularity** Irregularly sampled over time for the same patient, and different sampling schedules among patients. ### **Spatial Misalignment** Almost never spatially aligned. Fig. 1. Advantages of image-level trajectory inference. - Motivation - Preliminaries - Methods - ImageFlowNet - Experiments & Results - Theoretical Results - Empirical Results #### Neural ODE $$\frac{\mathrm{d}y(\tau)}{\mathrm{d}\tau} = f_{\theta}(y(\tau), \tau) \qquad (1a)$$ $$y(t_1) = y(t_0) + \int_{t_0}^{t_1} f_{\theta}(y(\tau), \tau) \mathrm{d}\tau \qquad (1b)$$ Parameterize the continuous dynamics of hidden units using an ordinary differential equation (ODE) specified by a neural network $$y(t_1) = \text{ODESolve}(f(y(t), t, \theta), y(t_0), t_0, t_1)$$ Figure 1: *Left:* A Residual network defines a discrete sequence of finite transformations. *Right:* A ODE network defines a vector field, which continuously transforms the state. *Both:* Circles represent evaluation locations. #### **Neural ODE** $$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$ #### adjoint sensitivity method $$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$ $$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$ Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. "Neural ordinary differential equations." Advances in neural information processing systems 31 (2018). #### **Neural SDE** $$dX_t = f(t, X_t) dt + g(t, X_t) \circ dW_t,$$ $f(t, X_t) dt$ – deterministic term $g(t, X_t) \circ \mathrm{d}W_t$ – stochastic term - Motivation - Preliminaries - Methods - ImageFlowNet - Experiments & Results - Theoretical Results - Empirical Results Methods (1/3): ImageFlowNet predicts future image from earlier image and time gap, by learning a vector field of latent features. Methods (2/3): The latent features are flowed with ODE or SDE. ### Methods (3/3): Loss components affect different modules. $\lambda_{v},\lambda_{c},\lambda_{s}$: weighting coefficients MSE: pixel-level mean-squared error D_{cos} : cosine distance of vectors $e(\cdot)$: a pre-trained vision encoder ODE: ordinary differential equation SDE: stochastic differential equation ### Loss components $$loss = \underbrace{\frac{1}{HWC} \sum_{h \in H} \sum_{w \in W} \sum_{c \in C} ||\widehat{x_j}[h, w, c] - x_j[h, w, c]||_2^2 + \lambda_v \left(-\frac{e(\widehat{x_j})^\top e(x_j)}{||e(\widehat{x_j})||_2||e(x_j)||_2} \right)}_{\mathbf{3} \ l_c : \ \text{contrastive learning (SimSiam)}} \\ + \lambda_c \left(-\frac{p_d(p_j(z_{t_i}))^\top p_j(z_{t_j})}{2||p_d(p_j(z_{t_i}))||_2||p_j(z_{t_j})||_2} - \frac{p_d(p_j(z_{t_j}))^\top p_j(z_{t_i})}{2||p_d(p_j(z_{t_j}))||_2||p_j(z_{t_j})||_2} \right) + \underbrace{\lambda_s ||f_\theta||_2^2}_{\lambda_s ||f_\theta||_2^2}$$ - 1 Image reconstruction objective is achieved by a MSE loss, attending to low-level features on the pixel level. - 2 Visual feature regularization guides the network to produce images that resemble the ground truth on high-level features judged by an encoder pretrained on ImageNet [15]. - 3 Contrastive learning regularization organizes a well-structured ImageFlowNet latent space, by encouraging proximity of representations from images within the same longitudinal series, following the SimSiam formulation [16]. - 4 Trajectory smoothness regularization leverages a theorem in convex optimization (Lemma 2.2 in [17]) to enforce smoothness of trajectories by regularizing the norm of the field. Notably, this achieves Lipschitz continuity, satisfying a crucial assumption for our theoretical results. Flowed latent features are collected hierarchically to form an image. $$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)}) \quad \text{for } b \in [1, B] \quad \text{(3a)} \quad z_{t_j}^{(b)} = z_{t_i}^{(b)} + \int_{t_i}^{t_j} f_{\theta}^{(b)}(z_{\tau}^{(b)}) \mathrm{d}\tau \quad \text{ for } b \in [1, B] \quad \text{(3b)}$$ $$\begin{split} \widehat{x_j} &= \text{ResBlock}(\text{Concat}(\widetilde{z}_{t_j}^{(2)}, z_{t_j}^{(1)})), \text{ where} \\ \widetilde{z}_{t_j}^{(b)} &= \text{Upsample}(\text{ResBlock}(\text{Concat}(\widetilde{z}_{t_j}^{(b+1)}, z_{t_j}^{(b)}))) \text{ for } b \in [2, B-1], \text{ with } \widetilde{z}_{t_j}^{(B)} = z_{t_j}^{(B)} \end{split}$$ NOTE: We used a novel ODE formulation, which we call a *position-parameterized* ODE. $$\frac{\mathrm{d}y(\tau)}{\mathrm{d}\tau} = f_{\theta}(y(\tau), \tau)$$ Standard ODE $$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)})$$ Our ODE Change of variable to make the comparison more obvious. $$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)}, \tau)$$ Standard ODE $$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)})$$ Our ODE ### Why the position-parameterized ODE. A bigger field to learn $$\frac{\mathrm{d}z_{\tau}^{(b)}}{\mathrm{d}\tau} = f_{\theta}^{(b)}(z_{\tau}^{(b)}, \tau)$$ Parameterization by "time" $$rac{\mathrm{d} z_{ au}^{(b)}}{\mathrm{d} au} = f_{ heta}^{(b)}(z_{ au}^{(b)})$$ Parameterization by "position" Why the position-parameterized ODE. - Motivation - Preliminaries - Methods - ImageFlowNet - Experiments & Results - Theoretical Results - Empirical Results Theoretical Results (1/2) Equivalent Expressiveness of our ODE and standard ODE. **Proposition IV.1.** Let f_{θ} be a continuous function that satisfies the Lipschitz continuity and linear growth conditions. Also, let the initial state $y(t_0) = y_0$ satisfy the finite second moment requirement. Suppose $z(t_0)$ is the latent representation learned by ImageFlowNet in the initial state corresponding to t_0 . Then, our neural ODEs are at least as expressive as the original neural ODEs, and their solutions capture the same dynamics. Theoretical Results (2/2) Connection between ImageFlowNet and dynamic optimal transport. **Proposition IV.2.** If we consider an image as a distribution over a 2D grid, ImageFlowNet is equivalently solving a dynamic optimal transport problem, as it meets 3 essential criteria: (1) matching the density, (2) smoothing the dynamics, and (3) minimizing the transport cost, where the ground distance is the Euclidean distance in the latent joint embedding space. ### Empirical Results (1/3): Future Image Forecasting Performance #### **Datasets:** - Retinal geographic atrophy - a. 2-5 years - b. <24 month gap - 2. Brain multiple sclerosis - a. ~5 years - b. ~4.4 time points per person - 3. Brain glioblastoma - a. <5 years - b. 2-18 time points per person Table 1: Image forecasting performance: $metric(x_j, \widehat{x_j})$. $\widehat{x_j} = \mathcal{F}(x_i, t_i, t_j), \forall i < j$. †Extrapolation methods use the entire history. "++" means using the 3 regularizations in Eqn (6). | Dataset | Metric | Linear [†] [24] | Cubic Spline [†] [25] | T-UNet [33] | T-Diffusion
[28] | ImageFlowNet _{ODE} (ours) | ImageFlowNet _{ODE} ++ (ours) | ImageFlowNet _{SDE} (ours) | ImageFlowNet _{SDE} + (ours) | |-------------------|------------------|--|--|--|--|--------------------------------------|--|-------------------------------------|--| | Retinal
Images | PSNR ↑
SSIM ↑ | $20.22 \pm 0.00 \\ 0.535 \pm 0.000$ | $19.79 \pm 0.00 \\ 0.505 \pm 0.000$ | 22.06 ± 0.33 0.635 ± 0.015 | 22.29 ± 0.33 0.624 ± 0.016 | 22.63 ± 0.26 0.646 ± 0.012 | $\frac{22.74}{0.647\pm0.013}$ | 22.32± 0.29
0.651 ± 0.015 | 22.89 ± 0.28
0.651 ± 0.012 | | all | MAE ↓ | 0.353 ± 0.000
0.163 ± 0.000 | 0.303 ± 0.000
0.177 ± 0.000 | 0.033 ± 0.013
0.126 ± 0.005 | 0.024 ± 0.016
0.122 ± 0.004 | 0.040 ± 0.012
0.119 ± 0.004 | 0.047 ± 0.013
0.118 ± 0.004 | 0.124 ± 0.005 | 0.031 ± 0.012
0.115 ± 0.004 | | cases | MSE \ | 0.050 ± 0.000 | 0.060 ± 0.000 | 0.029 ± 0.002 | 0.027 ± 0.004 | 0.024 ± 0.004 | 0.024 ± 0.001 | 0.027 ± 0.002 | 0.023 ± 0.004 | | 1 | DSC ↑ | 0.833 ± 0.000 | 0.756 ± 0.000 | 0.872 ± 0.002 | 0.867 ± 0.002 | 0.874 ± 0.012 | 0.873 ± 0.001 | 0.885 ± 0.011 | 0.883 ± 0.001 | | | HD↓ | 51.64 ± 0.00 | 54.30 ± 0.00 | $44.59 \!\pm 4.66$ | 44.41 ± 4.74 | 42.68 ± 4.82 | 47.10± 4.89 | 48.14± 4.87 | 45.14 ± 4.89 | | ninor | PSNR ↑ | 21.36± 0.00 | 21.08± 0.00 | 22.56± 0.55 | 22.99± 0.55 | 23.23± 0.34 | 23.44± 0.33 | 23.28 ± 0.36 | 23.63 ± 0.43 | | atrophy | SSIM ↑ | 0.599 ± 0.000 | 0.586 ± 0.000 | 0.662 ± 0.023 | 0.657 ± 0.024 | 0.682 ± 0.018 | 0.685 ± 0.018 | 0.693 ± 0.018 | 0.687 ± 0.019 | | growth | MAE↓ | 0.141 ± 0.000 | 0.147 ± 0.000 | 0.121 ± 0.007 | 0.114 ± 0.007 | 0.110 ± 0.005 | 0.108 ± 0.004 | 0.109 ± 0.005 | 0.106 ± 0.005 | | 2 | MSE ↓ | 0.038 ± 0.000 | 0.042 ± 0.000 | 0.027 ± 0.003 | 0.024 ± 0.002 | 0.021 ± 0.002 | 0.020 ± 0.002 | 0.021 ± 0.002 | 0.020 ± 0.002 | | | DSC ↑ | 0.900 ± 0.000 | 0.874 ± 0.000 | 0.949 ± 0.004 | 0.949 ± 0.004 | 0.936 ± 0.009 | 0.939 ± 0.007 | 0.948 ± 0.005 | 0.948 ± 0.006 | | | HD↓ | $38.15 {\pm}~0.00$ | 41.67 ± 0.00 | 35.74 ± 5.67 | 29.40 ± 4.77 | $34.59 {\pm}~6.20$ | 39.86 ± 6.40 | 31.66 ± 5.21 | 36.98 ± 6.04 | | major | PSNR ↑ | $19.02 {\pm}~0.00$ | 18.41 ± 0.00 | $21.40 \pm \text{ 0.33}$ | $21.68 \!\pm 0.32$ | 21.94 ± 0.34 | 22.01 ± 0.33 | 22.01 ± 0.30 | $22.10 \!\pm 0.31$ | | atrophy | SSIM ↑ | 0.468 ± 0.000 | 0.420 ± 0.000 | 0.607 ± 0.017 | 0.588 ± 0.017 | 0.607 ± 0.014 | 0.606 ± 0.014 | 0.607 ± 0.014 | 0.613 ± 0.013 | | growth | MAE ↓ | 0.186 ± 0.000 | 0.210 ± 0.000 | 0.135 ± 0.006 | 0.131 ± 0.006 | 0.129 ± 0.006 | 0.129 ± 0.006 | 0.128 ± 0.005 | 0.126 ± 0.005 | | 3 | $MSE \downarrow$ | 0.063 ± 0.000 | 0.080 ± 0.000 | 0.032 ± 0.003 | 0.030 ± 0.002 | 0.028 ± 0.002 | 0.028 ± 0.002 | 0.027 ± 0.002 | 0.027 ± 0.002 | | | DSC ↑ | 0.762 ± 0.000 | 0.631 ± 0.000 | 0.784 ± 0.016 | 0.779 ± 0.019 | 0.807 ± 0.014 | 0.803 ± 0.012 | 0.817 ± 0.016 | 0.814 ± 0.017 | | | HD↓ | 65.97 ± 0.00 | 67.73 ± 0.00 | 61.43 ± 7.26 | 60.36 ± 7.37 | 51.28 ± 7.13 | 54.79 ± 7.19 | 65.65 ± 7.17 | 53.81 ± 7.49 | | Brain | PSNR ↑ | $30.07 \!\pm 0.00$ | 29.56 ± 0.00 | $31.55 \!\pm 0.20$ | 31.57 ± 0.23 | 32.01 ± 0.19 | 32.34 ± 0.20 | 32.40 ± 0.20 | 32.41 ± 0.20 | | MS | SSIM ↑ | $0.895 \!\pm 0.000$ | 0.888 ± 0.000 | 0.909 ± 0.003 | 0.907 ± 0.003 | 0.914 ± 0.002 | 0.915 ± 0.002 | 0.913 ± 0.002 | 0.915 ± 0.002 | | lmages | $MAE \downarrow$ | 0.028 ± 0.000 | 0.030 ± 0.000 | 0.024 ± 0.000 | 0.024 ± 0.001 | 0.023 ± 0.000 | 0.021 ± 0.000 | 0.021 ± 0.000 | 0.021 ± 0.000 | | 4 | $MSE \downarrow$ | 0.004 ± 0.000 | 0.005 ± 0.000 | 0.004 ± 0.000 | 0.004 ± 0.000 | 0.003 ± 0.000 | 0.003 ± 0.000 | 0.003 ± 0.000 | 0.003 ± 0.000 | | | DSC ↑ | 0.739 ± 0.000 | 0.682 ± 0.000 | 0.774 ± 0.007 | 0.771 ± 0.007 | 0.775 ± 0.007 | 0.777 ± 0.007 | 0.777 ± 0.007 | 0.774 ± 0.007 | | | HD↓ | 22.73 ± 0.00 | 26.23 ± 0.00 | 22.00 ± 1.30 | 20.91 ± 1.23 | 22.38 ± 1.28 | 21.72± 1.16 | 22.21 ± 1.27 | <u>21.28</u> ± 1.27 | | Brain | PSNR ↑ | $35.32 {\pm}~0.00$ | 33.60 ± 0.00 | 35.73 ± 0.13 | 35.49 ± 0.17 | 35.86 ± 0.12 | 35.90 ± 0.14 | 35.77 ± 0.12 | $35.79 \!\pm 0.15$ | | GBM | SSIM ↑ | 0.929 ± 0.000 | 0.895 ± 0.000 | 0.935 ± 0.001 | 0.940 ± 0.001 | 0.940 ± 0.001 | 0.943 ± 0.001 | 0.937 ± 0.001 | 0.939 ± 0.001 | | Images | $MAE \downarrow$ | 0.017 ± 0.000 | 0.024 ± 0.000 | 0.015 ± 0.000 | 0.014 ± 0.000 | 0.014 ± 0.000 | 0.014 ± 0.000 | 0.015 ± 0.000 | 0.015 ± 0.000 | | 5 | MSE ↓ | 0.002 ± 0.000 | 0.005 ± 0.000 | 0.001 ± 0.000 | 0.002 ± 0.000 | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.001 ± 0.000 | | | DSC ↑ | 0.300 ± 0.000 | 0.287 ± 0.000 | 0.258 ± 0.018 | 0.253 ± 0.017 | 0.302 ± 0.019 | 0.266 ± 0.018 | 0.286 ± 0.019 | $0.287 \!\pm 0.017$ | | | HD↓ | 170.44 ± 0.00 | 165.62 ± 0.00 | 195.52 ± 7.69 | 189.61 ± 7.64 | 198.19± 7.78 | 185.14 ± 7.69 | 196.37 ± 7.74 | 181.66± 7.66 | | 1, 4, 5 | Rank ↓ | 6.3 ± 1.6 | 7.3 \pm 2.0 | $4.9 \scriptstyle{\pm 1.4}$ | 4.6± 1.9 | 2.9± 1.9 | 2.3± 1.6 | 3.4±2.0 | 2.1 ± 1.3 | | 1, 2, 3, 4, 5 | Rank ↓ | 6.5 ± 1.3 | 7.6 ± 1.5 | 4.9 ± 1.5 | $4.5 \scriptstyle{\pm 1.8}$ | 3.1 ± 1.6 | $2.7_{\pm 1.7}$ | $3.0 {\scriptstyle \pm 1.8}$ | 2.0 ± 1.2 | ### Empirical Results (2/3): Latent Space Regularization Figure 4: Joint representation space and the effect of contrastive learning regularization. Red dots are the observed disease states and arrows connect adjacent transitions. Normalized time is color coded. (A) Without regularization ($\lambda_c = 0$). (B) With contrastive learning regularization ($\lambda_c = 0.01$). Empirical Results (3/3): Test-Time Optimization (Using the entire history to locally fine-tune the vector field) Table 2: Effect of test-time optimization. | Iterations | Learning Rate | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | HD↓ | |------------|---------------|-------|-------|-------|-------|-------|--------------| | N/A | N/A | 22.31 | 0.643 | 0.123 | 0.027 | 0.827 | 51.07 | | 1 | 10^{-4} | 22.52 | 0.646 | 0.120 | 0.025 | 0.829 | 48.97 | | 1 | 10^{-5} | 22.36 | 0.643 | 0.122 | 0.027 | 0.827 | 51.02 | | 1 | 10^{-6} | 22.31 | 0.643 | 0.123 | 0.027 | 0.827 | 51.07 | | 10 | 10^{-4} | 20.63 | 0.605 | 0.157 | 0.042 | 0.749 | 64.79 | | 10 | 10^{-5} | 22.59 | 0.646 | 0.119 | 0.025 | 0.829 | 49.92 | | 10 | 10^{-6} | 22.36 | 0.644 | 0.122 | 0.027 | 0.827 | 51.01 | | 100 | 10^{-4} | 19.63 | 0.571 | 0.177 | 0.056 | 0.726 | 70.12 | | 100 | 10^{-5} | 20.92 | 0.614 | 0.152 | 0.040 | 0.759 | 58.76 | | 100 | 10^{-6} | 22.61 | 0.646 | 0.119 | 0.025 | 0.829 | <u>49.74</u> | ### **Ablation** TABLE II FLOW FIELD FORMULATION. | | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | HD↓ | |--------------------|-------|-------|-------|-------|-------|-------| | $f_{ heta}(z_t,t)$ | 22.42 | 0.643 | 0.123 | 0.027 | 0.872 | 48.38 | | $f_{ heta}(z_t)$ | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | TABLE III LATENT REPRESENTATION. | | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | $HD\downarrow$ | |------------------------|-------|-------|-------|-------|-------|----------------| | bottleneck only | 22.33 | 0.639 | 0.122 | 0.026 | 0.850 | 48.13 | | all unique resolutions | 22.49 | 0.643 | 0.122 | 0.025 | 0.859 | 43.39 | | all unique layers | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | TABLE IV VISUAL FEATURE REGULARIZATION. | λ_v | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | HD↓ | |-------------|-------|-------|-------|-------|-------|-------| | 0 | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | | 0.001 | 22.65 | 0.658 | 0.118 | 0.024 | 0.872 | 44.27 | | 0.01 | 22.64 | 0.650 | 0.120 | 0.025 | 0.872 | 45.89 | | 0.1 | 22.57 | 0.647 | 0.120 | 0.025 | 0.869 | 50.69 | | 1 | 22.54 | 0.634 | 0.124 | 0.027 | 0.867 | 48.13 | TABLE V CONTRASTIVE REGULARIZATION. | λ_c | PSNR↑ | SSIM↑ | $MAE\downarrow$ | $MSE\!\!\downarrow$ | DSC↑ | $HD\downarrow$ | |-------------|-------|-------|-----------------|---------------------|-------|----------------| | 0 | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | | 0.001 | 22.63 | 0.646 | 0.119 | 0.025 | 0.872 | 46.23 | | 0.01 | 22.65 | 0.652 | 0.118 | 0.024 | 0.875 | 42.18 | | 0.1 | 22.38 | 0.651 | 0.121 | 0.025 | 0.871 | 45.30 | | 1 | 22.25 | 0.644 | 0.121 | 0.025 | 0.868 | 46.85 | TABLE VI SMOOTHNESS REGULARIZATION. | λ_s | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | $HD\downarrow$ | |-------------|-------|-------|-------|-------|-------|----------------| | 0 | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | | 0.001 | 22.38 | 0.649 | 0.123 | 0.027 | 0.870 | 46.91 | | 0.01 | 22.65 | 0.648 | 0.119 | 0.024 | 0.870 | 45.71 | | 0.1 | 22.70 | 0.657 | 0.118 | 0.024 | 0.878 | 47.44 | | 1 | 22.69 | 0.655 | 0.118 | 0.024 | 0.875 | 45.16 |