

DiffKillR:

Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images

Presenter: Chen Liu

Krishnaswamy Lab, Yale University

DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images

Chen Liu1*Danqi Liao1*Alejandro Parada-Mayorga2*Alejandro Ribeiro3Marcello DiStasio1Smita Krishnaswamy1

¹Yale University ²University of Colorado Denver ³University of Pennsylvania

* These authors are joint first authors. Please direct correspondence to: smita.krishnaswamy@yale.edu.

50th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)

Track: Biomedical Signal and Image Processing

Motivation

Microscopy Image Analysis

Heterogeneous

- shape

_

- appearance
- morphology
- modality

- Diverse Tasks

- Cell Counting
- Orientation Prediction
- Segmentation
 - nuclei
 - cytoplasm
 - subcellular structures
- Many others

Extremely Laborious

Image Credit to Cellpose: deep learning-based, generic cell segmentation

Preliminaries

Diffeomorphisms

"A diffeomorphism is a map between manifolds which is differentiable and has a differentiable inverse."

Examples of diffeomorphisms

Diffeomorphisms allow local warpings

Methods (1/3)

DiffKillR: **Killing and Recreating Diffeomorphisms**

Intuition: Cells exhibit diverse shapes, poses, and morphometric features, but notably, **a small set of archetypes can represent most cells**.

Remark 1: When two cells are **sufficiently similar**, differing only by a diffeomorphism, we can **compute the warping field** between them. This enables a pixel-perfect mapping of annotation from one cell to the other.

Remark 2: To achieve this, we need a way to measure such "**similarity**" that is invariant to diffeomorphisms.

Methods (2/3)

DiffKillR: Killing and Recreating Diffeomorphisms

DiffKillR is a novel framework that reframes cell annotation as the combination of **archetype matching** and **image registration** tasks.

- Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling.

- More importantly, it is suitable for any type of pixel-level annotation.

Methods (3/3)

DiffKillR: Killing and Recreating Diffeomorphisms

Remark 1: When two cells are sufficiently similar, differing only by a **diffeomorphism**, we can compute the **warping field** between them. This enables a pixel-perfect mapping of annotation from one cell to the other.

DiffeoMappingNet

Sensitive to Diffeomorphisms

Remark 2: To achieve this, we need a way to measure such "**similarity**" that is invariant to diffeomorphisms.

DiffeoInvariantNet

Invariant to Diffeomorphisms

Workflow (1/3)

A small set of annotated cells forms a cell bank.

We call them "archetypal" cells, but in practice random selection would be sufficient.

Workflow (2/3)

DiffeoInvariantNet learns a latent space that is invariant to common diffeomorphisms. For each new cell, it finds the closest archetypal cell within the cell bank.

Workflow (3/3)

DiffeoMappingNet transforms the label to the new cell using the pairwise diffeomorphism computed via image registration.

Diffeomorphisms Considered

We introduce a suite of realistic diffeomorphisms.

Theoretical Results (1/2)

Covers for diffeomorphism group and bandlimited deformations.

Infinite dimensional transformation can be characterized by a finite number of its realizations. Every ω -bandlimited deformation can be uniquely determined by some combinations of elements in \hat{G} since there exists a constant C_0 that satisfies Equation 4.

Theorem 4.1 [62, Adapted from Theorem 1.6] Let G be a Lie group and \widehat{G} a finite subset of G. Then there exists a constant $C_0 > 0$ such that every deformation in $\mathcal{PW}_{\omega}(S)$ is uniquely determined by its values on \widehat{G} as long as

$$\epsilon^{\star}(\widehat{G}) < (C_0 \omega)^{-1} \le \epsilon_{max}(G).$$
(4)

 $oldsymbol{S}$: a positive definite self-adjoint operator with spectrum in [0, inf) $\mathcal{PW}_{\omega}(oldsymbol{S})$: the set of all ω -bandlimited deformations $\epsilon_{max}(G) := \max_{g,g' \in G} d_{geo}(g,g') \quad d_{geo}(\cdot, \cdot)$: geodesic distance

Theoretical Results (2/2)

Error bounds for cell matching with DiffeoInvariantNet.

For cell matching using the encoder Φ of DiffeoInvariantNet, the error between the test cell and the matched archetype cell in the latent space is bounded above by some functions of the minimal covering radius ϵ of the cell bank \hat{G} and the Lipschitz constant *L* of the encoder.

Theorem 4.2 Let M be the matching operator and $\mathbf{T}_{g_i} \{s_j\} = M \{\Phi\{\hat{s}\}\}\$ for the test deformed cell \hat{s} . If $Y_{\widehat{G}}(\epsilon) = \bigcup_{g_i \in \widehat{G}} B(g_i, \epsilon)$ is the minimum covering of G and Φ is L-Lipschitz, then it follows that

$$\left\| \mathbf{\Phi} \left\{ \mathbf{T}_{g_i} \left\{ s_j \right\} \right\} - \mathbf{\Phi} \left\{ \widehat{s} \right\} \right\| \le L\epsilon \|s_j\| + \mathcal{O} \left(\|\widehat{s}\|^2 \right).$$

$$\begin{split} \boldsymbol{M} &: \text{matching operator that matches new cell to the reference (archetypal) cell} \\ \mathbf{T}_{g_i}\{s_j\} \text{ for } i \ = \ 1, 2, \dots, m \text{ and } j \ = \ 1, 2, \dots, n \ : \text{cell bank, where } m \ = \ \# \text{ augmentations} \\ \widehat{\boldsymbol{S}} &: \text{new cell} \qquad \qquad \boldsymbol{M} \left\{ \boldsymbol{\Phi} \left\{ \widehat{s} \right\} \right\} = \arg\min_{i,j} \| \boldsymbol{\Phi} \left\{ \mathbf{T}_{g_i} \left\{ s_j \right\} \right\} - \boldsymbol{\Phi} \left\{ \widehat{s} \right\} \| \end{split}$$

Empirical Results (1/5)

Sanity Checking the DiffeoInvariantNet

→ Reasonable cell matching results

matching <u>cells augmented by a realistic diffeomorphism</u> to its <u>original version</u>

TABLE ICell matching on histology images [30].

	MAP	1-neighbor Accuracy	3-neighbor Accuracy
Breast Cancer Colon Cancer Prostate Cancer	$\begin{array}{c} 0.954 \pm 0.023 \\ 0.900 \pm 0.004 \\ 0.876 \pm 0.012 \end{array}$	$\begin{array}{c} 0.949 \pm 0.009 \\ 0.845 \pm 0.006 \\ 0.799 \pm 0.055 \end{array}$	$\begin{array}{c} 0.912 \pm 0.013 \\ 0.830 \pm 0.007 \\ 0.808 \pm 0.015 \end{array}$

Empirical Results (2/5)

Sanity Checking the DiffeoMappingNet

→ Ablating DiffeoMappingNet architecture on Synthetic Shape Registration

Fig. 2. Mapping diffeomorphisms of synthetic shapes with DiffeoMappingNet.

Empirical Results (2/5)

Sanity Checking the DiffeoMappingNet

→ Ablating DiffeoMappingNet architecture on Synthetic Shape Registration

TABLE II

DIFFEOMORPHISM PREDICTION ON SYNTHETIC SHAPES.

	UNet [13]	VM [25]	VM-Diff [26]	CorrMLP [27]
NCC $(W) \uparrow$	-0.096 ± 0.961	-0.310 ± 0.899	0.668 ± 5.397	-0.609 ± 0.527
$D_{\mathrm{L1}}(\mathcal{W})\downarrow$	1.758 ± 0.443	1.386 ± 0.232	1.298 ± 0.258	1.356 ± 0.087
D_{L1} (image) \downarrow	28.367 ± 2.937	27.180 ± 5.559	26.621 ± 3.712	$\underline{26.701} \pm 3.675$
DSC (mask) ↑	0.964 ± 0.014	0.957 ± 0.020	0.966 ± 0.012	0.972 ± 0.012
IoU (mask) ↑	0.931 ± 0.025	0.918 ± 0.036	0.935 ± 0.023	0.946 ± 0.022
Runtime ↓	19.067 ± 1.424	$\textbf{2.243} \pm 0.130$	3.220 ± 0.153	53.281 ± 1.602

Empirical Results (3/5)

Application 1: Cell Counting

TABLE III

Cell Counting Performance on histology images [30].

		Precision ↑	Recall ↑	F1 ↑
Breast Cancer	Blob Detection DiffKillR (ours), 10%	$\begin{array}{c} 0.488 \pm 0.001 \\ \textbf{0.500} \pm 0.076 \end{array}$	$\begin{array}{c} 0.269 \pm 0.020 \\ \textbf{0.719} \pm 0.003 \end{array}$	$\begin{array}{c} 0.347 \pm 0.019 \\ \textbf{0.585} \pm 0.054 \end{array}$
Colon Cancer	Blob Detection DiffKillR (ours), 10%	$\begin{array}{c} 0.323 \pm 0.070 \\ \textbf{0.410} \pm 0.051 \end{array}$	$\begin{array}{c} 0.260 \pm 0.044 \\ \textbf{0.500} \pm 0.053 \end{array}$	$\begin{array}{c} 0.288 \pm 0.055 \\ \textbf{0.450} \pm 0.051 \end{array}$
Prostate Cancer	Blob Detection DiffKillR (ours), 10%	$\begin{array}{c} 0.343 \pm 0.038 \\ \textbf{0.464} \pm 0.077 \end{array}$	$\begin{array}{c} 0.264 \pm 0.053 \\ \textbf{0.640} \pm 0.046 \end{array}$	$\begin{array}{c} 0.298 \pm 0.048 \\ \textbf{0.531} \pm 0.034 \end{array}$

Empirical Results (4/5)

Application 2: Cell Orientation Prediction

TABLE IV

CELL ORIENTATION PREDICTION ON EPITHELIAL CELLS.

	Hard Example Mining Ratio	D_{L1} (label) \downarrow	D_{θ} (label) \downarrow
Matching Archetype's Label Flipping & 90-degree rotations		$\begin{array}{c} 0.246 \pm 0.036 \\ 0.207 \pm 0.025 \end{array}$	30.29 ± 4.57 19.67 ± 7.22
DiffKillR (ours)	0.00 0.25 0.50 0.75 1.00	$\begin{array}{c} \underline{0.175} \pm 0.030 \\ \hline \textbf{0.158} \pm 0.025 \\ 0.189 \pm 0.028 \\ 0.191 \pm 0.029 \\ 0.187 \pm 0.076 \end{array}$	$\frac{18.29 \pm 6.90}{17.68 \pm 6.43}$ 19.01 ± 7.25 19.06 ± 6.79 19.54 ± 7.21

Empirical Results (5/5)

Application 3: Few-Shot Segmentation

Fig. 3. Few-shot cell segmentation performance on histology images [30].

Many thanks to our team!

Chen Liu Yale

Danqi Liao Yale

Alejandro Parada-Mayorga University of Colorado, Denver

Alejandro Ribeiro University of Pennsylvania

Marcello DiStasio Yale

Smita Krishnaswamy Yale