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❏ Entropy and mutual information in neural networks provide rich information on 
the learning process.

❏ But they are historically difficult to compute when the dimension is high due to 
curse of dimensionality.

❏ We leverage diffusion geometry to access the underlying manifold and reliably 
compute these information-theoretic measures.

Motivation
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❏ Entropy

Shannon

von Neumann

❏ Mutual Information
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❏ Classic method is binning + quantization.

Background



❏ Diffusion geometry

Diffusion Map
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❏ Our method: use diffusion geometry.

Methods



Methods

❏ Our method: use diffusion geometry.
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Methods (propositions)

❏ First, we provide the lower bound and the upper bound of DSE when t -> inf, and 
we explain the conditions when they are reached.

❏ 4.1 implies that if all data points are very similar, i.e., have the same probability of transitioning to any 
other point, then it has minimal entropy.

❏ 4.2 shows that DSE will reach its maximum value when the points are spread out very far apart.



Methods (propositions)

❏ Next, we examine the expected value of DSE.

Equation 1 is here:

This establishes a theoretical 
upper bound on the DSE at any 
given layer.

Also reinforces that for large d, 
beta is close to 0, so DSE <= log(n).



Methods (propositions)

❏ Finally, we investigate the entropy progression in neural network training.

Recall the training process of a classification neural network. During training, the embeddings will spread out into 
different clusters. This proposition suggests that the upper bound of DSE will increase along the training process.
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Results (Intuition)
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❏ (A) DSE increases as intrinsic 
dimension grows, while CSE does 
not capture this trend due to 
curse of dimensionality.

❏ (B) When two random variables 
are dependent, DSMI negatively 
correlates with the level of data 
corruption, while CSMI does not 
capture this trend. DSMI I D(Z; Y ) 
and CSMI are computed on 
synthetic, 20-dimensional trees 
with { 2, 5, 10 } branches (Left, 
Mid, Right).

Results (Verify Trending)



❏ All methods generally obey the expected behavior
❏ (3rd panel) CSMI, NPEET and MINE fail as the dimension increases beyond 10,000, while DSMI still remains 

significant.

Results (DSMI at very high dimension)

Figure: Mutual information estimation on toy Gaussian blobs



Results (Computational Efficiency)

Figure: DSMI scales better than other methods at high dimensions.



Results (Evolution along neural network training)

Experimented with 
❏ 6 models: 3 ConvNets, 3 Vision Transformers
❏ 3 learning settings: supervised, self-supervised and nonsense overfitting.
❏ 3 datasets: MNIST, CIFAR-10, and STL-10.
❏ 3 random seeds



DSE of embedding vectors

❏ DSE(Z) generally increases 
as models perform better in 
proper learning. 

Figure: Diffusion Spectral Entropy DSE(Z) of embedding vector Z.



DSMI with output

❏ DSMI(Z;Y) consistently 
increases in proper 
learning.

❏ DSMI climbs more slowly 
in contrastive learning 
compared to supervised 
learning and ends up at a 
lower terminal value.

❏ In nonsense 
memorization, DSMI 
quickly converges to 
around zero.

Figure: Diffusion Mutual Information DSMI(Z; Y) between embedding vector Z and class label Y.



Figure: Diffusion Spectral Mutual Information DSMI(Z; X) between embedding vector Z and input X.

DSMI with input

❏ DSMI(Z; X) keeps 
increasing during learning 
on the MNIST dataset.

❏ DSMI(Z; X) mostly 
decreasing on the CIFAR-
10 and STL-10 datasets.

❏ In nonsense 
memorization, DSMI(Z; X) 
rises to a significant level 
in most cases

❏ In contrast to information 
bottleneck theory
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❏ Observation 1: Even under 
the same initialization code, 
some networks starts with 
low DSE while others starts 
with high DSE.

❏ Observation 2: If starting at 
low DSE, DSE will increase 
monotonically. If starting at 
high DSE, DSE will decrease 
first and then increase.

❏ Question: Will initial DSE 
affect the training dynamics?

Network Initialization Experiment for DSE



Will initializing the network at a high DSE vs. a low DSE affect the learning process?

❏ Initializing convolutional layers with a normal distribution with a mean of 0 and a tunable standard deviation.
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CIFAR-10 STL-10



Figure: PHATE representation of the embedding spaces during training for low (panel A) and 
high (panel B) initial DSE. Colors represent ground truth class labels.

Network Initialization Experiment for DSE



❏ Correlation analysis between DSE(Z), 
DSMI(Z; X), DSMI (Z; Y) and 
ImageNet accuracy evaluated on 962 
pretrained models.

❏ Red circles are ConvNets and blue 
circles are ViTs. Circle sizes indicate 
model sizes.

❏ DSMI (Z; Y) (last row) shows a strong 
positive correlation (p < 0.001).

Results (ImageNet cross-model correlation)



❏ Further investigate the effect of network initialization

❏ Explore DSE and/or DSMI as regularizations for supervised learning

❏ Use DSE and/or DSMI to regularize self-supervised learning

❏ Can further extend this framework to data from other systems, in addition to neural 

networks, to understand how neural networks such as brain networks. 

Future works
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