Krishnaswamy Lab
Yale University

Assessing Neural Network Representations During Training
Using Noise - Resilient Diffusion Spectral Entropy

Presenter: Chen Liu
Nov 2023



Krishnaswamy Lab

OUt“ne Yale University

W Motivation
W Background

W Methods
W Definition of Diffusion Spectral Entropy (DSE)
W Definition of Diffusion Spectral Mutual Information (DSMI)
W Propositions and Properties

W Experiments & Results

V' Toy test cases for DSE and DSMI

DSMI at very high dimension

Computational Efficiency

Evolution along neural network training

Utility Study: Network Initialization Experiment for DSE
Utility Study: ImageNet cross - model correlation

22z



Krishnaswamy Lab

OUt“ne Yale University

W Motivation
W
W
W
W
W
W

222z



M Otlvatlon Krishnaswamy Lab

Yale University

W Entropy and mutual information in neural networks provide rich information on
the learning process.

W But they are historically difficult to compute when the dimension is high due to
curse of dimensionality.

W We leverage diffusion geometry to access the underlying manifold and reliably
compute these information -theoretic measures.
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W Entropy
Shannon H(X) = E[-logp(X)] = — ) _ p(z)logp(z
e X
von Neumann H(p) = —tr(plogp) = —>_, nilogn;

W Mutual Information
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W Classic method is binning + quantization.

entropy & mutual information: some form of — > _ plogp — how to estimate p?

?

n continuous scalars — n x 1 Q n continuous 1 x D vectors = n x D
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b-level quantization ..D..D b-level quantization
(here, bis 3) 05 05 L0 05 00 10 (here, bis 3)
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. #unique buckets scales with b”
estimate p

when D is large
every point is assigned to a different bin
everyone has the same entropy log(n)
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W Diffusion geometry

Diffusion Map
g(Z]_,ZZ)
K(z1,22) = , Where
#122) = 160, 3162, O
2y —22 112

G(z1,22) =€ @

K(z1,22)
1K (21, )1

P;; = p(zi,2j) =
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W Classic method is binning + quantization.
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W Our method: use diffusion geometry.

entropy & mutual information: some form of — > _ plogp — how to estimate p?

n continuous scalars — n x 1 Q n continuous 1 x D vectors = n x D

WCI Hﬁiigg
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b-level quantization ..D..D b-level quantization
(here, bis 3) 05 05 L0 05 00 10 (here, bis 3)

. count =1

binning . count = 3 binning - count = 1

I:‘ count = 2

4

estimate p

count =1

count = 1

#unique buckets scales with b”
when D is large
every point is assigned to a different bin
everyone has the same entropy log(n)

?

Y]

tensor — graph — matrix

0

use the von Neumann formulation:
matrix eigenvalues as p

V

estimate p

a total of n eigenvalues
does not require quantization or binning
does not scale with D
avoids the curse of dimensionality
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W Our method: use diffusion geometry.

RP RP

n data points < n nodes
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Definition 4.1. We define Diffusion Spectral En-
tropy (DSE) as an entropy of the eigenvalues of the
diffusion operator P x computed on a dataset X where
x € X is a multidimensional vector [z1,x2...x4q)7:

Sp(Px,t) = — Z a; ¢ log(a,¢) (7)

where o = ZI%IfTJI‘--l’ and {\;} are the eigenvalues of
J J
the diffusion matriz P x.
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Definition 4.2. We define Diffusion Spectral Mu-
tual Information (DSMI) as the difference between
conditional and unconditional diffusion spectral en-

tropy

Ip(X;Y) =Sp(Px,t)

- 3 oY =wSo®xiy—ynt) ®
€Y
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W First, we provide the lower bound and the upper bound of DSE whent -> inf, and
we explain the conditions when they are reached.

Proposition 4.1. Sp achieves a minimal entropy of 0
when the diffusion operator defines an ergodic Markov
chain, and is in steady state (ast — o).

Proposition 4.2. Ast — oo, Sp(Px,t) on data with
k well-separated clusters is log(k).

W 4.1 implies that if all data points are very similar, i.e., have the same probability of transitioning to any
other point, then it has minimal entropy.
W 4.2 shows that DSE will reach its maximum value when the points are spread out very far apart.
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W Next, we examine the expected value of DSE.

Proposition 4.3. Let X € R"¥4 be a dataset of
n independent and identically distributed multivariate
Gaussian vectors in R?, where z; ~ N(0,1;). Then,
using K as defined in Eqn 1 with oo = 1/2,

E[Sp(Px,t =1)]
Bn
élﬂg(l_ ( +( ) )log(1+—1_ﬁ)
whereﬁz( +E o
o

Yale University

- G(zy,22)
) = oG R leG T

Glar, zg) = 2545 2

This establishes a theoretical
upper bound on the DSE at any
given layer.

Also reinforces that for large d,
beta is close to 0, so DSE <= log(n).
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W Finally, we investigate the entropy progression in neural network training.

Proposition 4.4. Take n to be arbitrarily large. Let
X € R™"*4 be a matriz of i.i.d. random values Zij ~ [.
LetY € R"*? be a matriz of i.i.d. random values y;; ~
f, but imn k € N distinct clusters such that when the
anisotropic probability matriz is computed for o = 1/2,
the probability of diffusion between points of different
clusters is arbitrarily small. Then, using 3 as defined

in Proposition 4.3, the approximate upper bound on
DSE increases by log(k).

Recall the training process of a classification neural network. During training, the embeddings will spread out into
different clusters. This proposition suggests that the upper bound of DSE will increase along the training process.
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W (A) DSE increases as intrinsic
dimension grows, while CSE does
not capture this trend due to
curse of dimensionality.

W  (B) When two random variables
are dependent, DSMI negatively
correlates with the level of data
corruption, while CSMI does not
capture this trend. DSMI'| D(Z; Y')
and CSMI are computed on
synthetic, 20 -dimensional trees
with { 2, 5, 10 } branches (Left,
Mid, Right).



