
Assessing Neural Network Representations During Training 
Using Noise - Resilient Diffusion Spectral Entropy

Presenter: Chen Liu

Nov 2023



Ẃ Motivation
Ẃ Background
Ẃ Methods

Ẃ Definition of Diffusion Spectral Entropy (DSE) 
Ẃ Definition of Diffusion Spectral Mutual Information (DSMI)
Ẃ Propositions and Properties

Ẃ Experiments & Results
Ẃ Toy test cases for DSE and DSMI
Ẃ DSMI at very high dimension
Ẃ Computational Efficiency
Ẃ Evolution along neural network training
Ẃ Utility Study: Network Initialization Experiment for DSE
Ẃ Utility Study: ImageNet cross - model correlation

Outline



Ẃ Motivation
Ẃ Background
Ẃ Methods

Ẃ Definition of Diffusion Spectral Entropy (DSE) 
Ẃ Definition of Diffusion Spectral Mutual Information (DSMI)
Ẃ Propositions and Properties

Ẃ Experiments & Results
Ẃ Toy test cases for DSE and DSMI
Ẃ DSMI at very high dimension
Ẃ Computational Efficiency
Ẃ Evolution along neural network training
Ẃ Utility Study: Network Initialization Experiment for DSE
Ẃ Utility Study: ImageNet cross - model correlation

Outline



Ẃ Entropy and mutual information in neural networks provide rich information on 
the learning process.

Ẃ But they are historically difficult to compute when the dimension is high due to 
curse of dimensionality.

Ẃ We leverage diffusion geometry to access the underlying manifold and reliably 
compute these information - theoretic measures.
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Ẃ Entropy

Shannon

von Neumann

Ẃ Mutual Information
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Ẃ Classic method is binning + quantization.
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Ẃ Diffusion geometry

Diffusion Map
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Ẃ Classic method is binning + quantization.
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Ẃ Our method: use diffusion geometry.
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Ẃ Our method: use diffusion geometry.
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Methods (propositions)

Ẃ First, we provide the lower bound and the upper bound of DSE when t - > inf, and 
we explain the conditions when they are reached.

Ẃ 4.1 implies that if all data points are very similar, i.e., have the same probability of transitioning to any 
other point, then it has minimal entropy.

Ẃ 4.2 shows that DSE will reach its maximum value when the points are spread out very far apart.



Methods (propositions)

Ẃ Next, we examine the expected value of DSE.

Equation 1 is here:

This establishes a theoretical 
upper bound on the DSE at any 
given layer.

Also reinforces that for large d, 
beta is close to 0, so DSE <= log(n).



Methods (propositions)

Ẃ Finally, we investigate the entropy progression in neural network training.

Recall the training process of a classification neural network. During training, the embeddings will spread out into 
different clusters. This proposition suggests that the upper bound of DSE will increase along the training process.
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Ẃ (A) DSE increases as intrinsic 
dimension grows, while CSE does 
not capture this trend due to 
curse of dimensionality.

Ẃ (B) When two random variables 
are dependent, DSMI negatively 
correlates with the level of data 
corruption, while CSMI does not 
capture this trend. DSMI I D(Z; Y ) 
and CSMI are computed on 
synthetic, 20 - dimensional trees 
with { 2, 5, 10 } branches (Left, 
Mid, Right).

Results (Verify Trending)


