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A Ablation Studies

A.1 Flow Field Formulation

The first experiment we considered was whether formulating the flow field f✓ as f✓(zt, t) or f✓(zt)

Table S3: Effect of flow field formulation.
PSNR" SSIM" MAE# MSE# DSC" HD#

f✓(zt, t) 22.42 0.643 0.123 0.027 0.872 48.38
f✓(zt) 22.63 0.646 0.119 0.024 0.874 42.68

would affect the performance. As men-
tioned earlier, we decided on the f✓(zt)
formulation analytically, and here we
support our decision with empirical evi-
dence (Table S3).

A.2 Single-scale vs Multiscale ODEs

The UNet architecture uses hierarchical hidden layers to extract multiscale representations. Start-
ing at the image resolution and ending at the bottleneck layer (bottom of the “U”), the model
produces increasingly higher-level and more global representations. In this study, we analyze

Table S4: Selection of latent representations for ODE inference.
PSNR" SSIM" MAE# MSE# DSC" HD#

bottleneck only 22.33 0.639 0.122 0.026 0.850 48.13
all unique resolutions 22.49 0.643 0.122 0.025 0.859 43.39
all unique layers 22.63 0.646 0.119 0.024 0.874 42.68

the advantages of multiscale
ODEs. Moreover, there might
be multiple hidden layers at the
same resolution. On which rep-
resentations should we perform
trajectory inference?

To study this, we explored the following settings: (1) infer a single-scale zt from the bottleneck
layer, (2) infer multiscale {zt} at all layers and use distinct f✓ for each resolution, but all hidden
layers of the same resolution share the same f✓, and (3) infer multiscale {zt} at all layers and use
distinct f✓ for each hidden layer. The empirical results as shown in Table S4 indicate that modeling
all representations separately would lead to the best performance.

Note: To avoid confusion, all of these hidden layers produce outputs that are bridged by skip con-
nections from the contraction path to the expansion path.

A.3 Effects of Regularizations

We experimented with the effect of visual feature regularization under different �v (Table S5), con-
trastive learning regularization under different �c (Table S6), and trajectory smoothness regulariza-
tion under different �s. (Table S7).

Table S5: Effect of visual feature regularization.
�v PSNR" SSIM" MAE# MSE# DSC" HD#
0 22.63 0.646 0.119 0.024 0.874 42.68
0.001 22.65 0.658 0.118 0.024 0.872 44.27
0.01 22.64 0.650 0.120 0.025 0.872 45.89
0.1 22.57 0.647 0.120 0.025 0.869 50.69
1 22.54 0.634 0.124 0.027 0.867 48.13
�v = 0 & no MSE loss 21.53 0.593 0.133 0.031 0.860 49.78

The results showed that regularization on
visual features through a pre-trained vi-
sion encoder, contrastive learning regu-
larization, and constraining on trajectory
smoothness all yielded some improve-
ments. The final set of weighting coef-
ficients is �v = 0.001, �c = 0.01, and
�s = 0.1.

Table S6: Effect of contrastive regularization.

�c PSNR" SSIM" MAE# MSE# DSC" HD#
0 22.63 0.646 0.119 0.024 0.874 42.68
0.001 22.63 0.646 0.119 0.025 0.872 46.23
0.01 22.65 0.652 0.118 0.024 0.875 42.18
0.1 22.38 0.651 0.121 0.025 0.871 45.30
1 22.25 0.644 0.121 0.025 0.868 46.85

Table S7: Effect of smoothness regularization.

�s PSNR" SSIM" MAE# MSE# DSC" HD#
0 22.63 0.646 0.119 0.024 0.874 42.68
0.001 22.38 0.649 0.123 0.027 0.870 46.91
0.01 22.65 0.648 0.119 0.024 0.870 45.71
0.1 22.70 0.657 0.118 0.024 0.878 47.44
1 22.69 0.655 0.118 0.024 0.875 45.16
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B Propositions and Proofs

B.1 Proposition 3.2

Proposition B.1. Let f✓ be a continuous function that satisfies the Lipschitz continuity and linear
growth conditions. Also, let the initial state y(t0) = y0 satisfy the finite second moment requirement
(E[|y(t0)|2] < 1). Suppose z(t0) is the latent representation learned by ImageFlowNet at the
initial state corresponding to t0. Then, our neural ODEs (Eqn (3a)) are at least as expressive as the
original neural ODEs (Eqn (1a)), and their solutions capture the same dynamics.

We recall the two dynamic systems for original neural ODEs and our ODEs:

Original neural ODEs:

dy(⌧)

d⌧
= f✓(y(⌧), ⌧), f✓ : Rn ⇥ [0, T ] ! Rn

Our neural ODEs, with (1) superscript ·(b) omitted without loss of generality, (2) z⌧ equivalently
replaced by z(⌧) for notation consistency, and (3) f✓ replaced by f̃✓ for distinction:

dz(⌧)

d⌧
= f̃✓(z(⌧)), f̃✓ : Rm ! Rm

Proof.

Theorem B.2 (Picard-Lindelöf [52]). Let D ⇢ Rn be an open set, and let f : D ⇥ [0, T ] ! Rn be
a continuous function that satisfies a Lipschitz condition in y uniformly in ⌧ . Then, for any initial
condition y(t0) = y0, there exists a unique solution to the initial value problem:

dy(⌧)

d⌧
= f(y(⌧), ⌧), y(t0) = y0.

Lipschitz Condition:
|f✓(y1, ⌧)� f✓(y2, ⌧)|  L|y1 � y2|

Linear Growth Condition:
|f✓(y, ⌧)|  K(1 + |y|)

Given these conditions, both the original neural ODE and the Latent Space Neural ODE have unique
strong solutions.

Since both the original ODE and the Latent Space Neural ODE have unique solutions, we could
then construct a bijective and sufficiently smooth mapping h : Rn ⇥ [0, T ] ! Rm such that z(⌧) =
h(y(⌧), ⌧).

We define a function h(y, ⌧) that maps the state y(⌧) and time ⌧ to a new latent state z(⌧) as

h(y, ⌧) := y(⌧)� ⌧,

where � denotes the concatenation of the state and time.

Then, as h is bijective, the inverse function h
�1 maps z(⌧) back to y(⌧) and ⌧ . Given h(y, ⌧) =

y � ⌧ , the inverse is:

h
�1(z) = (y(ztime), ztime)

By the chain rule, the derivative of z(⌧) with respect to ⌧ is:

dz(⌧)

d⌧
=

@h

@y

dy

d⌧
+

@h

@⌧

Substituting the ODE for y(⌧), we get:
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dz(⌧)

d⌧
=

@h

@y
f✓(y(⌧), ⌧) +

@h

@⌧

We can then simply define the function f̃✓ in the latent space such that it incorporates the dynamics
from the original space:

f̃✓(z(⌧)) :=
@h

@y
f✓(y(⌧), ⌧) +

@h

@⌧

The universal approximation theorem ensures that there exists a neural network parameterized by ✓

that can approximate any continuous function, including f̃✓(z(⌧)).

Existence of Equivalent Function Since the neural network can approximate f̃✓(z(⌧)), there
exists a function f̃✓(z(⌧)) in the latent space that can represent the same system behavior governed
by f✓(y(⌧), ⌧) in the original space.

Proving Equivalence: Given z(⌧) = h(y(⌧), ⌧) and the corresponding functions f✓ and f̃✓, we
have shown that the new ODE formulation:

dz(⌧)

d⌧
= f̃✓(z(⌧))

captures the same dynamics as the original ODE:

dy(⌧)

d⌧
= f✓(y(⌧), ⌧)
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B.2 Proposition 3.3

Proposition B.3. If we consider an image as a distribution over a 2D grid, ImageFlowNet is equiva-
lently solving a dynamic optimal transport problem, as it meets three essential criteria: (1) matching
the density, (2) smoothing the dynamics, and (3) minimizing the transport cost, where the ground
distance is the Euclidean distance in the latent joint embedding space.

Proof. ImageFlowNet can alternatively be viewed in the context of a dynamic optimal transport
framework, which aims to determine the optimal plan ⇡ to transport mass from an initial distribu-
tion µ to a target distribution ⌫ for a fixed state interval [⌧i, ⌧j ]. The task meets three requirements
of dynamic optimal transport: (1) matching the density, (2) smoothing the dynamics, and (3) mini-
mizing the transport cost. The ground distance in the latent joint embedding space is the Euclidean
distance.

Matching the density The image is a 2D grid, and the distribution for the pixel intensities is µ at
⌧i and ⌫ at ⌧j on this grid. µ and ⌫ are defined on measure space X ⇢ Rn and Y ⇢ Rn respectively.
The set of all joint probability measures on X ⇥ Y is denoted as ⇧(µ, ⌫) and c(x, y) is the cost of
moving a mass unit from the original distribution µ at state ⌧i to the target distribution ⌫ at state ⌧j .
Then, the distance between the two distributions µ and ⌫ is the p-Wasserstein distance:

W (µ, ⌫)p :=

✓
inf

⇡2⇧(µ,⌫)

Z

X⇥Y
c(x, y)d⇡(x, y)

◆ 1
p

, where p � 1

Benamou & Brenier [23] present a dynamic view of optimal transport, which links to differential
equations. For the state interval [⌧i, ⌧j ], there is a smooth and status-dependent density P (z, ⌧) �
0 with

R
Rn P (z, ⌧)dz = 1, 8⌧ 2 [⌧i, ⌧j ], and a velocity fields f(z, ⌧) that obeys the continuity

equation:

@⌧P +r · (Pf) = 0, with ⌧ 2 [⌧i, ⌧j ] and z 2 Rn, where P (·, ⌧i) = µ, P (·, ⌧j) = ⌫

Smoothing the dynamics The velocity fields f(z, ⌧) follows the Lipschitz condition |f(z1, ⌧) �
f(z2, ⌧)|  L|z1�z2| where L > 0, which ensures a smooth and controlled transport process. With
the following setup, Benamou & Brenier [23] show that the Wasserstein distance with order 2 (W2)
is:

W (µ, ⌫)22 = inf
(p,f)

Z

Rn

Z
⌧j

⌧i

P (z, ⌧)kf(z, ⌧)k2d⌧dz

Minimizing the transport cost Based on the main theorems in [53, 54], this problem aims to
find the trajectory f that minimizes the transport cost on the path space Rn, we define the ground
distance in the latent joint embedding space to be the Euclidean distance:

W (µ, ⌫)22 = inf
f

E
Z

⌧j

⌧i

kf(z⌧ , ⌧)k2d⌧
�

s.t.
@z(⌧)

@⌧
= f✓(z⌧ , ⌧), z⌧i ⇠ µ, z⌧j ⇠ ⌫

Here, f✓ follows the ODE (3a) or the SDE (7).

With the above setups, ImageFlowNet is equivalent to a dynamic optimal transport problem trying
to match the density at different states.
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C Additional Background on Longitudinal Image Data

Longitudinal image datasets, including but not limited to retinal images or even medical images,
often come with several challenges: 1 high dimensionality, 2 temporal sparsity, 3 sampling
irregularity, and 4 spatial misalignment.

1 High Dimensionality is intrinsic to image data. For images with height of H pixels, width of
W pixels and C image channels, the dimensionality of the data is RH⇥W⇥C , which can easily go
beyond a hundred thousand dimensions: a small image of 256⇥ 256⇥ 3 has 196.6 thousand dimen-
sions. Such high dimensionality is rarely encountered by most methods in time series prediction and
temporal dynamics modeling [54, 56–60].

Figure S1: Temporal sparsity, sampling irregularity and spatial misalignment in longitudinal images.

2 Temporal Sparsity is especially common in longitudinal images in healthcare, as images are
usually acquired at separate visits of the patient, where the time gap can be several months or years.
In contrast, a relatively well-studied adjacent field is video data [61–63], where the frame rate can
easily be 60 Hz or higher. This renders our data of interest easily 108 times sparser compared to the
better studied video data.

3 Sampling Irregularity is also ubiquitous in clinical practice, both within and among longitudinal
image series. Within-series irregularity means that the visits are not necessarily evenly distributed
for the same patient over time. Among-series irregularity means that different patients do not follow
the same readmission schedule either — in terms of both time intervals and number of visits. Times
for visits can significantly vary based on doctors’ evaluation of the condition, the availability of
doctors and/or imaging facilities, and the patient’s own preferences, among others. This feature
defies the assumptions of most methods that require regular sampling or common sampling [54, 64].

4 Spatial Misalignment is often seen in longitudinal medical images too. Indeed, it is almost
impossible to enforce pixel-perfect alignment of images acquired at different visits. Luckily, this
problem can be addressed by image registration without any compounding effect with the temporal
sparsity or sampling irregularity issues. See Appendix E for an illustration of image registration.

Temporal sparsity, sampling irregularity, and spatial misalignment are illustrated in Figure S1. These
properties and challenges listed above lead to a fairly unique area of research that is largely
underexplored but highly interesting to healthcare professionals.

Consider retinal imaging as an example. Most existing approaches to estimate disease progression
in retinal imaging data do not operate in the image space, but rather in a vector space of a few
clinical features extracted from the images. Examples of these derived statistics include the area
of geographic atrophy lesions [65], the number of lesions [66], the lesion perimeter [65], its prior
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observed growth rate [66], the presence and pattern of hyperfluorescence around the border of a
lesion [67]. Although these approaches have been effective, they compress the rich context in the
images to just a few metrics, and the output is an oversimplified representation of the disease states.
This simplification overlooks the nuanced variations and complexities that are discarded during the
feature extraction process and limits the interpretability of the output to a few preselected scalar-
valued features.

In contrast, our proposed ImageFlowNet capitalizes on the extensive information available in the
image to provide a nuanced representation of future conditions and also addresses the limitations of
traditional metrics-based methodologies by offering a more dynamic and detailed visualization of
disease progression. This method gives healthcare professionals an intuitive understanding of the
expected progression of the disease and allows them to provide patients with a visual forecast that
goes beyond mere numerical data.

We hope that our method can establish a new standard in the discipline and potentially transform
clinical practices in areas including but not limited to ophthalmology or neurology, with the help of
the latest imaging and measurement techniques [68, 69] as well as computational tools for disease
diagnosis [70–72], risk prediction [73, 74], uncertainty quantification [75, 76], planning [77–80],
and patient care [81–83].

D Additional Background on Why Time-Awareness is Important

Solving our problem outlined in Section 2 with deep learning requires designing and optimizing a
model F : (RH⇥W⇥C

,R,R) ! RH⇥W⇥C , such that bxj = F(xi, ti, tj) and bxj ⇡ xj .

In most existing image-to-image tasks, the mapping between each pair of input xi and output xj

obeys the same transformation rules, and hence their models are designed to be time-agnostic. For
example, in denoising [84, 85], xj is the noise-free version of xi; in super-resolution [86–89], xj is
higher in resolution than xi by a fixed factor; in reconstruction [90–95], xj is the transformed version
of xi through a fixed set of rules guided by physics; in contrast mapping [96–100], xj represents the
effect of staining or contrast agents when applied to xi; and in segmentation [101–107], xj returns a
label map describing the anatomical or functional segments in xi. For these purposes, time-agnostic
models, such as UNet or most diffusion models1 remain competitive.

However, in our scenario, the output image is a function of both the input image and time. Given
the same input image xi, it will not end up at the same output image if the time interval changes. An
image showing a disease 2 years after onset may look very different compared to 2 days after onset.
In such cases, attempting to solve this problem using a model without time-modeling capabilities
would be fundamentally ill-posed. In short, the spatial-temporal problem requires a spatial-temporal
solution, which inspired our development of ImageFlowNet.

1While diffusion models have modules that can encode time, many variants are used in a time-agnostic
manner for tasks like denoising or super-resolution, where “time” is no different from “iteration”.
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E Image Registration

E.1 Retinal Images

For all images, we extracted descriptive keypoints with SuperRetina [108], a high-quality keypoint
detector trained on retinal images. Then we identified the keypoint correspondences for each image
pair in each longitudinal series with a k-nearest-neighbor matcher and considered any image pair
that has at least 15 keypoint correspondences a successful match. Next, we selected the image that
produced the most successful matches as the “anchor image”. Finally, we aligned all images in the
longitudinal series towards the “anchor image” using perspective transformation so that the degree
of freedom is constrained to the adjustment of camera angle or position. As a post-processing step,
for each longitudinal series, we cropped all images with the biggest common foreground square so
that no image contained any background pixel outside the retina region.

The image registration process for a pair of images from the same longitudinal series is illustrated
in Figure S2. It can be seen that all veins are aligned in the resulting images while atrophy borders
are not. This is expected from perspective transformation and is exactly desirable for our task.

Figure S2: Our image registration pipeline. (A) Moving and fixed images come from the same eye
at different time points. (B) SuperRetina is used to detect consistent and descriptive keypoints. (C)
Keypoints are matched by descriptor similarity and filtered by distance heuristics. (D) The moving
image is aligned under the constraint of a perspective transformation.

E.2 Brain Multiple Sclerosis Images

These images were already registered. No additional work was done.

E.3 Brain Glioblastoma Images

We used the scans in the “DeepBraTumIA” folders, which were registered to a common atlas, but the
registration did not adequately align the scans in each longitudinal series. We used the Python tool
from ANTS [109] to perform Affine followed by Diffeomorphic registration with [4, 2, 1] iterations
to align each scan towards the first scan in series.
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F Implementation Details

Architectures The proposed ImageFlowNet combines UNet and Neural ODEs. The UNet model
follows the time-conditional UNet implementation in Guided Diffusion [33]. Neural ODEs are
implemented with torchdiffeq [111].

Data Augmentation We used the albumentations package [112] to perform flipping, shifting, scal-
ing, rotation, random brightness, and random contrast. We also make the UNet training a denoising
process by adding random Gaussian noise to the input.

Hyperparamters and training details All experiments were performed on a SLURM server,
where each job was allocated either an NVIDIA A100 GPU, an NVIDIA A5000 GPU, or an
NVIDIA RTX 3090 GPU. All jobs can be completed within 2-5 days on a single GPU with 8
CPU cores. T-Diffusion usually takes the longest to train. ImageFlowNetSDE variant may require
a 40-GB GPU (sometime that will still hit an OOM error if running too many function evaluations
in the SDE) while all other methods can be trained on a 20-GB GPU. Experiments shared the same
set of hyperparameters: learning rate = 0.0001, batch size = 64, number of epochs = 120. Adam
with decoupled weight decay (AdamW) [113] optimizer was used, along with a cosine annealing
learning rate scheduler with linear warmup.

To accommodate the GPU VRAM limits, we used gradient aggregation to trade efficiency for space
while achieving the desired effective batch size — we used an actual batch size of 1, scaled the loss
by 1

64 , and updated the weights every 64 batches.

The code has been uploaded to GitHub and we will release it once the paper is accepted.

Training of the segmentation networks are described in the next section (Evaluation Metrics).
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G Evaluation Metrics

The evaluation metrics cover image similarity, residual magnitude, and atrophy similarity.

Image similarity We measure the image similarity between the real future image xj and the
predicted future image bxj using peak signal-to-noise ratio (PSNR) and structural similarity in-
dex (SSIM). These two metrics are widely used in image-to-image tasks such as super-resolution,
denoising, inpainting, etc.

PSNR is a normalized version of the mean squared error between two images that takes into account
the dynamic range of the image data. The formula is given by Eqn (8).

PSNR(xa, xb) = 10 log10

✓
R

MSE(xa, xb)

◆
, where (8)

R is the common dynamic range of the images

MSE(xa, xb) =
1

H ⇥W

X

h2H,w2W

||x(h,w)
a

� x
(h,w)
b

||2

SSIM measures the similarity between two images by describing the perceived change in structural
information. The formula is given by Eqn (9). We used the implementation in Scikit-image [114].

SSIM(xa, xb) =
(2µxaµxb + c1)(2�xaxb + c2)

(µ2
xa

+ µ2
xb

+ c1)(�2
xa

+ �2
xb

+ c2)
, where (9)

µxa is the pixel sample mean of xa

µxb is the pixel sample mean of xb

�
2
xb

is the variance of xb

�
2
xb

is the variance of xb

�xbxb is the covariance of xa and xb

c1 = (0.01R)2, c2 = (0.03R)2

R is the common dynamic range of the images

Residual magnitude We evaluated the magnitude of the residual maps bxj � xj using the mean
average error (MAE) and the mean squared error (MSE).

Atrophy similarity We also want to emphasize the precise representation of the atrophy region.
To this end, the simplest metric is the dice similarity coefficient (DSC) and Hausdorff distance (HD)
of the binarized atrophy regions. DSC and HD between two binary masks X and Y are given by
Eqn (10) and Eqn (11), respectively. For HD, we used the implementation in Scikit-image [114].

DSC(X,Y ) =
|X \ Y |
|X|+ |Y | (10)

HD(X,Y ) = max

⇢
sup
x2X

d(x, Y ), sup
y2Y

d(X, y)

�
(11)

To perform atrophy segmentation, we separately trained three auxiliary image segmentation net-
work on all images, one for each dataset. All retinal images have their atrophy regions labeled by
ophthalmologists. All brain images have associated segmentation maps from the dataset providers.
These segmentators that we trained have an nn-UNet [115] architecture and were trained with an
AdamW [113] optimizer at an initial learning rate of 0.001 for 120 epochs. With these networks, we
can segment the atrophy regions in both the real future image xj and the predicted future image bxj .
DSC and HD can be computed on the segmentation masks between each pair of interest.
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