

ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images

Chen Liu*, Ke Xu*, Liangbo L. Shen, Guillaume Huguet, Zilong Wang, Alexander Tong, Danilo Bzdok, Jay Stewart, Jay C. Wang, Lucian V. Del Priore, Smita Krishnaswamy (a) yale.edu or lucian.delpriore (a) yale.edu.

GitHub: https://github.com/ChenLiu-1996/ImageFlowNet and https://github.com/KrishnaswamyLab/ImageFlowNet.

Figure 2: Overview of the proposed ImageFlowNet. (A) The model uses an earlier image x_i at time t_i as well as the change in time $t_j - t_i$ to forecast the future image x_j at time t_j . (B) For each hidden layer, a separate flow field f_{θ} is used to model the joint patient embedding space. Trajectory inference can be performed by integration along this flow field. It should be noted that the change in time $t_j - t_i$ is sufficient for integration in practice, while the exact time values t_i and t_j are included in the integral merely for mathematical clarity. (C) The learning objective has four components. The loss function and modules affected by each component are illustrated.

3. Results

Theoretical Results

1. Equivalent Expressiveness of our ODE and standard ODE.

Proposition IV.1. Let f_{θ} be a continuous function that satisfies the Lipschitz continuity and linear growth conditions. Also, let the initial state $y(t_0) = y_0$ satisfy the finite second moment requirement. Suppose $z(t_0)$ is the latent representation learned by ImageFlowNet in the initial state corresponding to t_0 . Then, our neural ODEs are at least as expressive as the original neural ODEs, and their solutions capture the same dynamics.

2. Connection between ImageFlowNet and dynamic optimal transport.

Proposition IV.2. If we consider an image as a distribution over a 2D grid, ImageFlowNet is equivalently solving a dynamic optimal transport problem, as it meets 3 essential criteria: (1) matching the density, (2) smoothing the dynamics, and (3) minimizing the transport cost, where the ground distance is the Euclidean distance in the latent joint embedding space.

Future Image Forecasting Performance

Future Image Forecasting Performance (continued)

Table 1: Image forecasting performance: $metric(x_j, \hat{x_j})$. $\hat{x_j} = \mathcal{F}(x_i, t_i, t_j), \forall i < j$. †Extrapolation methods use the entire history. "++" means using the 3 regularizations in Eqn (5).

Dataset	Metric	Linear [†] [30]	Cubic Spline [†] [31]	T-UNet [40]	T-Diffusion [34]	ImageFlowNet _{ODE} (ours)	ImageFlowNet _{ODE} ++ (ours)	ImageFlowNet _{SDE} (ours)	ImageFlowNet _{SDE} ++ (ours)
Retinal Images all cases	PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓	$\begin{array}{c} 20.22 \pm 0.00 \\ 0.535 \pm 0.000 \\ 0.163 \pm 0.000 \\ 0.050 \pm 0.000 \\ 0.833 \pm 0.000 \\ 51.64 \pm 0.00 \end{array}$	$\begin{array}{c} 19.79 \pm 0.00 \\ 0.505 \pm 0.000 \\ 0.177 \pm 0.000 \\ 0.060 \pm 0.000 \\ 0.756 \pm 0.000 \\ 54.30 \pm 0.00 \end{array}$	22.06 ± 0.33 0.635 ± 0.015 0.126 ± 0.005 0.029 ± 0.002 0.872 ± 0.012 44.59 ± 4.66	22.29 ± 0.33 0.624 ± 0.016 0.122 ± 0.004 0.027 ± 0.002 0.867 ± 0.014 44.41 ± 4.74	$egin{array}{c} 22.63 \pm 0.26 \\ 0.646 \pm 0.012 \\ 0.119 \pm 0.004 \\ \underline{0.024} \pm 0.001 \\ 0.874 \pm 0.012 \\ \hline oldsymbol{42.68} \pm 4.82 \\ \end{array}$	22.74 ± 0.25 0.647 ± 0.013 0.118 ± 0.004 0.024 ± 0.001 0.873 ± 0.011 47.10 ± 4.89	$egin{array}{c} 22.32 \pm 0.29 \\ \textbf{0.651} \pm 0.015 \\ 0.124 \pm 0.005 \\ 0.027 \pm 0.002 \\ \textbf{0.885} \pm 0.011 \\ 48.14 \pm 4.87 \end{array}$	$egin{array}{c} 22.89 \pm 0.28 \\ 0.651 \pm 0.012 \\ 0.115 \pm 0.004 \\ 0.023 \pm 0.001 \\ \underline{0.883} \pm 0.012 \\ 45.14 \pm 4.89 \\ \hline \end{array}$
minor atrophy growth 2	PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓	$21.36 \pm 0.00 \\ 0.599 \pm 0.000 \\ 0.141 \pm 0.000 \\ 0.038 \pm 0.000 \\ 0.900 \pm 0.000 \\ 38.15 \pm 0.00$	$21.08 \pm 0.00 \ 0.586 \pm 0.000 \ 0.147 \pm 0.000 \ 0.042 \pm 0.000 \ 0.874 \pm 0.000 \ 41.67 \pm 0.00$	22.56 ± 0.55 0.662 ± 0.023 0.121 ± 0.007 0.027 ± 0.003 $\textbf{0.949} \pm 0.004$ 35.74 ± 5.67	$egin{array}{c} 22.99 \pm 0.55 \\ 0.657 \pm 0.024 \\ 0.114 \pm 0.007 \\ 0.024 \pm 0.002 \\ \textbf{0.949} \pm 0.004 \\ \textbf{29.40} \pm 4.77 \end{array}$	23.23 ± 0.34 0.682 ± 0.018 0.110 ± 0.005 0.021 ± 0.002 0.936 ± 0.009 34.59 ± 6.20	23.44 ± 0.33 0.685 ± 0.018 0.108 ± 0.004 0.020 ± 0.002 0.939 ± 0.007 39.86 ± 6.40	$egin{array}{c} 23.28 \pm 0.36 \\ \textbf{0.693} \pm 0.018 \\ 0.109 \pm 0.005 \\ 0.021 \pm 0.002 \\ 0.948 \pm 0.005 \\ \underline{31.66} \pm 5.21 \end{array}$	$egin{array}{c} {\bf 23.63} \pm 0.43 \\ {\bf 0.687} \pm 0.019 \\ {\bf 0.106} \pm 0.005 \\ {\bf 0.020} \pm 0.002 \\ {\bf 0.948} \pm 0.006 \\ {\bf 36.98} \pm 6.04 \\ \end{array}$
major atrophy growth 3	PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓	$19.02 \pm 0.00 \\ 0.468 \pm 0.000 \\ 0.186 \pm 0.000 \\ 0.063 \pm 0.000 \\ 0.762 \pm 0.000 \\ 65.97 \pm 0.00$	$18.41\pm0.00 \ 0.420\pm0.000 \ 0.210\pm0.000 \ 0.080\pm0.000 \ 0.631\pm0.000 \ 67.73\pm0.00$	21.40 ± 0.33 0.607 ± 0.017 0.135 ± 0.006 0.032 ± 0.003 0.784 ± 0.016 61.43 ± 7.26	21.68 ± 0.32 0.588 ± 0.017 0.131 ± 0.006 0.030 ± 0.002 0.779 ± 0.019 60.36 ± 7.37	21.94 ± 0.34 0.607 ± 0.014 0.129 ± 0.006 0.028 ± 0.002 0.807 ± 0.014 51.28 ± 7.13	22.01 ± 0.33 0.606 ± 0.014 0.129 ± 0.006 0.028 ± 0.002 0.803 ± 0.012 54.79 ± 7.19	22.01 ± 0.30 0.607 ± 0.014 0.128 ± 0.005 0.027 ± 0.002 0.817 ± 0.016 65.65 ± 7.17	$egin{array}{c} 22.10 \pm 0.31 \\ 0.613 \pm 0.013 \\ 0.126 \pm 0.005 \\ 0.027 \pm 0.002 \\ \underline{0.814} \pm 0.017 \\ \underline{53.81} \pm 7.49 \\ \end{array}$
Brain MS Images 4	PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓	$30.07 \pm 0.00 \\ 0.895 \pm 0.000 \\ 0.028 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.739 \pm 0.000 \\ 22.73 \pm 0.00$	29.56 ± 0.00 0.888 ± 0.000 0.030 ± 0.000 0.005 ± 0.000 0.682 ± 0.000 26.23 ± 0.00	31.55 ± 0.20 0.909 ± 0.003 0.024 ± 0.000 0.004 ± 0.000 0.774 ± 0.007 22.00 ± 1.30	31.57 ± 0.23 0.907 ± 0.003 0.024 ± 0.001 0.004 ± 0.000 0.771 ± 0.007 20.91 ± 1.23	32.01 ± 0.19 0.914 ± 0.002 0.023 ± 0.000 0.003 ± 0.000 0.775 ± 0.007 22.38 ± 1.28	32.34 ± 0.20 0.915 ± 0.002 0.021 ± 0.000 0.003 ± 0.000 0.777 ± 0.007 21.72 ± 1.16	32.40 ± 0.20 0.913 ± 0.002 0.021 ± 0.000 0.003 ± 0.000 0.777 ± 0.007 22.21 ± 1.27	32.41 ± 0.20 0.915 ± 0.002 0.021 ± 0.000 0.003 ± 0.000 0.774 ± 0.007 21.28 ± 1.27
Brain GBM Images	PSNR↑ SSIM↑ MAE↓ MSE↓ DSC↑ HD↓	$\begin{array}{c} 35.32 \pm 0.00 \\ 0.929 \pm 0.000 \\ 0.017 \pm 0.000 \\ 0.002 \pm 0.000 \\ \underline{0.300} \pm 0.000 \\ \underline{170.44} \pm 0.00 \end{array}$	33.60 ± 0.00 0.895 ± 0.000 0.024 ± 0.000 0.005 ± 0.000 0.287 ± 0.000 165.62 ± 0.00	35.73 ± 0.13 0.935 ± 0.001 0.015 ± 0.000 0.001 ± 0.000 0.258 ± 0.018 195.52 ± 7.69	35.49 ± 0.17 0.940 ± 0.001 0.014 ± 0.000 0.002 ± 0.000 0.253 ± 0.017 189.61 ± 7.64	35.86 ± 0.12 0.940 ± 0.001 0.014 ± 0.000 0.001 ± 0.000 0.302 ± 0.019 198.19 ± 7.78	35.90 ± 0.14 0.943 ± 0.001 0.014 ± 0.000 0.001 ± 0.000 0.266 ± 0.018 185.14 ± 7.69	35.77 ± 0.12 0.937 ± 0.001 0.015 ± 0.000 0.001 ± 0.000 0.286 ± 0.019 196.37 ± 7.74	35.79 ± 0.15 0.939 ± 0.001 0.015 ± 0.000 0.001 ± 0.000 0.287 ± 0.017 181.66 ± 7.66
1, 4, 5 $1, 2, 3, 4, 5$	Rank↓ Rank↓	$6.3 \pm 1.6 \\ 6.5 \pm 1.3$	$7.3 \pm 2.0 \\ 7.6 \pm 1.5$	$4.9_{\pm 1.4}$ $4.9_{\pm 1.5}$	$4.6 \pm 1.9 \\ 4.5 \pm 1.8$	$2.9 \pm 1.9 \ 3.1 \pm 1.6$	$\frac{2.3}{2.7}$ ± 1.6	$\begin{array}{c} \textbf{3.4} \pm 2.0 \\ \textbf{3.0} \pm 1.8 \end{array}$	2.1 ± 1.3 2.0 ± 1.2

Latent Space Regularization

Figure 4: Joint representation space and the effect of contrastive learning regularization. Red dots are the observed disease states and arrows connect adjacent transitions. Normalized time is color coded. (A) Without regularization ($\lambda_c = 0$). (B) With contrastive learning regularization ($\lambda_c = 0.01$).

Test-Time Optimization

Using the entire history to locally fine-tune the vector field

Table 2	: Effect of tes	t-time onti	mization
Iuoic 2	. Lilet of tes	of thine opti	umzanon

_	Iterations	Learning Rate	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	HD↓
	N/A	N/A	22.31	0.643	0.123	0.027	0.827	51.07
	1	10^{-4}	22.52	0.646	0.120	0.025	0.829	48.97
	1	10^{-5}	22.36	0.643	0.122	0.027	0.827	51.02
	1	10^{-6}	22.31	0.643	0.123	0.027	0.827	51.07
	10	10^{-4}	20.63	0.605	0.157	0.042	0.749	64.79
	10	10^{-5}	22.59	0.646	0.119	0.025	0.829	49.92
	10	10^{-6}	22.36	0.644	0.122	0.027	0.827	51.01
	100	10^{-4}	19.63	0.571	0.177	0.056	0.726	70.12
	100	10^{-5}	20.92	0.614	0.152	0.040	0.759	58.76
	100	10^{-6}	22.61	0.646	0.119	0.025	0.829	<u>49.74</u>

Ablation Studies

	Tiblation Stadio																										
2	Table 3: Flow field formulation.																										
$PSNR\uparrow$ $SSIM\uparrow$ $MAE\downarrow$ $MSE\downarrow$ $DSC\uparrow$ $HD\downarrow$						HD↓	Table 5: Visual feature regularization. Table 6: Contrastive regularization.							Table 7: Smoothness regularization.													
$f_{ heta}(z_t,t)$	22.42	0.643	0.123	0.027	0.872	Table 5: Visual feature regularization.								rable of	: Contr	astive	regular	izauon	l .		abic 7.	Sinoot	1111035 1	cguiai.	ization	•	
$f_{ heta}(z_t,t) \ f_{ heta}(z_t)$	22.63	0.646	0.119	0.024	0.874	42.68	$\overline{\lambda_v}$	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	HD↓	λ_c	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	HD↓	λ_s	PSNR↑	SSIM↑	MAE↓	MSE↓	DSC↑	$HD\downarrow$
Table 4: Latent representation.				0	22.63	0.646	0.119	0.024	0.874	42.68	0	22.63	0.646	0.119	0.024	0.874	42.68	0	22.63	0.646	0.119	0.024	0.874	42.68			
P <u>-</u>	Table	4. Laic	int repi	CSCIII	mon.		0.001	22.65	0.658	0.118	0.024	0.872	44.27	0.001	22.63	0.646	0.119	0.025	0.872	46.23	0.001	22.38	0.649	0.123	0.027	0.870	46.91
		PSNR↑ S	SSIM↑ M	AE↓ MS	E↓ DSC↑	HD↓	0.01	22.64	0.650	0.120	0.025	0.872	45.89	0.01	22.65	0.652	0.118	0.024	0.875	42.18	0.01	22.65	0.648	0.119	0.024	0.870	45.71
bottleneck	•	22.33	0.007 0.	.122 0.02	26 0.850		0.1	22.57	0.647	0.120	0.025	0.869	50.69	0.1	22.38	0.651	0.121	0.025	0.871	45.30	0.1	22.70	0.657	0.118	0.024	0.878	47.44
all unique all unique	resolutions layers	22.49 22.63		.122 0.02 .119 0.02		10.07	1	22.54	0.634	0.124	0.027	0.867	48.13	1	22.25	0.644	0.121	0.025	0.868	46.85	1	22.69	0.655	0.118	0.024	0.875	45.16