ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images Chen Liu*, Ke Xu*, Liangbo L. Shen, Guillaume Huguet, Zilong Wang, Alexander Tong, Danilo Bzdok, Jay Stewart, Jay C. Wang, Lucian V. Del Priore, Smita Krishnaswamy (a) yale.edu or lucian.delpriore (a) yale.edu. GitHub: https://github.com/ChenLiu-1996/ImageFlowNet and https://github.com/KrishnaswamyLab/ImageFlowNet. Figure 2: Overview of the proposed ImageFlowNet. (A) The model uses an earlier image x_i at time t_i as well as the change in time $t_j - t_i$ to forecast the future image x_j at time t_j . (B) For each hidden layer, a separate flow field f_{θ} is used to model the joint patient embedding space. Trajectory inference can be performed by integration along this flow field. It should be noted that the change in time $t_j - t_i$ is sufficient for integration in practice, while the exact time values t_i and t_j are included in the integral merely for mathematical clarity. (C) The learning objective has four components. The loss function and modules affected by each component are illustrated. ## 3. Results ## Theoretical Results 1. Equivalent Expressiveness of our ODE and standard ODE. **Proposition IV.1.** Let f_{θ} be a continuous function that satisfies the Lipschitz continuity and linear growth conditions. Also, let the initial state $y(t_0) = y_0$ satisfy the finite second moment requirement. Suppose $z(t_0)$ is the latent representation learned by ImageFlowNet in the initial state corresponding to t_0 . Then, our neural ODEs are at least as expressive as the original neural ODEs, and their solutions capture the same dynamics. 2. Connection between ImageFlowNet and dynamic optimal transport. **Proposition IV.2.** If we consider an image as a distribution over a 2D grid, ImageFlowNet is equivalently solving a dynamic optimal transport problem, as it meets 3 essential criteria: (1) matching the density, (2) smoothing the dynamics, and (3) minimizing the transport cost, where the ground distance is the Euclidean distance in the latent joint embedding space. # Future Image Forecasting Performance ## Future Image Forecasting Performance (continued) Table 1: Image forecasting performance: $metric(x_j, \hat{x_j})$. $\hat{x_j} = \mathcal{F}(x_i, t_i, t_j), \forall i < j$. †Extrapolation methods use the entire history. "++" means using the 3 regularizations in Eqn (5). | Dataset | Metric | Linear [†]
[30] | Cubic Spline [†] [31] | T-UNet
[40] | T-Diffusion [34] | ImageFlowNet _{ODE} (ours) | ImageFlowNet _{ODE} ++ (ours) | ImageFlowNet _{SDE} (ours) | ImageFlowNet _{SDE} ++ (ours) | |-----------------------------------|--------------------------------------|--|---|--|---|--|--|--|--| | Retinal
Images
all
cases | PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓ | $\begin{array}{c} 20.22 \pm 0.00 \\ 0.535 \pm 0.000 \\ 0.163 \pm 0.000 \\ 0.050 \pm 0.000 \\ 0.833 \pm 0.000 \\ 51.64 \pm 0.00 \end{array}$ | $\begin{array}{c} 19.79 \pm 0.00 \\ 0.505 \pm 0.000 \\ 0.177 \pm 0.000 \\ 0.060 \pm 0.000 \\ 0.756 \pm 0.000 \\ 54.30 \pm 0.00 \end{array}$ | 22.06 ± 0.33 0.635 ± 0.015 0.126 ± 0.005 0.029 ± 0.002 0.872 ± 0.012 44.59 ± 4.66 | 22.29 ± 0.33 0.624 ± 0.016 0.122 ± 0.004 0.027 ± 0.002 0.867 ± 0.014 44.41 ± 4.74 | $egin{array}{c} 22.63 \pm 0.26 \\ 0.646 \pm 0.012 \\ 0.119 \pm 0.004 \\ \underline{0.024} \pm 0.001 \\ 0.874 \pm 0.012 \\ \hline oldsymbol{42.68} \pm 4.82 \\ \end{array}$ | 22.74 ± 0.25 0.647 ± 0.013 0.118 ± 0.004 0.024 ± 0.001 0.873 ± 0.011 47.10 ± 4.89 | $egin{array}{c} 22.32 \pm 0.29 \\ \textbf{0.651} \pm 0.015 \\ 0.124 \pm 0.005 \\ 0.027 \pm 0.002 \\ \textbf{0.885} \pm 0.011 \\ 48.14 \pm 4.87 \end{array}$ | $egin{array}{c} 22.89 \pm 0.28 \\ 0.651 \pm 0.012 \\ 0.115 \pm 0.004 \\ 0.023 \pm 0.001 \\ \underline{0.883} \pm 0.012 \\ 45.14 \pm 4.89 \\ \hline \end{array}$ | | minor
atrophy
growth
2 | PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓ | $21.36 \pm 0.00 \\ 0.599 \pm 0.000 \\ 0.141 \pm 0.000 \\ 0.038 \pm 0.000 \\ 0.900 \pm 0.000 \\ 38.15 \pm 0.00$ | $21.08 \pm 0.00 \ 0.586 \pm 0.000 \ 0.147 \pm 0.000 \ 0.042 \pm 0.000 \ 0.874 \pm 0.000 \ 41.67 \pm 0.00$ | 22.56 ± 0.55 0.662 ± 0.023 0.121 ± 0.007 0.027 ± 0.003 $\textbf{0.949} \pm 0.004$ 35.74 ± 5.67 | $egin{array}{c} 22.99 \pm 0.55 \\ 0.657 \pm 0.024 \\ 0.114 \pm 0.007 \\ 0.024 \pm 0.002 \\ \textbf{0.949} \pm 0.004 \\ \textbf{29.40} \pm 4.77 \end{array}$ | 23.23 ± 0.34 0.682 ± 0.018 0.110 ± 0.005 0.021 ± 0.002 0.936 ± 0.009 34.59 ± 6.20 | 23.44 ± 0.33 0.685 ± 0.018 0.108 ± 0.004 0.020 ± 0.002 0.939 ± 0.007 39.86 ± 6.40 | $egin{array}{c} 23.28 \pm 0.36 \\ \textbf{0.693} \pm 0.018 \\ 0.109 \pm 0.005 \\ 0.021 \pm 0.002 \\ 0.948 \pm 0.005 \\ \underline{31.66} \pm 5.21 \end{array}$ | $egin{array}{c} {\bf 23.63} \pm 0.43 \\ {\bf 0.687} \pm 0.019 \\ {\bf 0.106} \pm 0.005 \\ {\bf 0.020} \pm 0.002 \\ {\bf 0.948} \pm 0.006 \\ {\bf 36.98} \pm 6.04 \\ \end{array}$ | | major
atrophy
growth
3 | PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓ | $19.02 \pm 0.00 \\ 0.468 \pm 0.000 \\ 0.186 \pm 0.000 \\ 0.063 \pm 0.000 \\ 0.762 \pm 0.000 \\ 65.97 \pm 0.00$ | $18.41\pm0.00 \ 0.420\pm0.000 \ 0.210\pm0.000 \ 0.080\pm0.000 \ 0.631\pm0.000 \ 67.73\pm0.00$ | 21.40 ± 0.33 0.607 ± 0.017 0.135 ± 0.006 0.032 ± 0.003 0.784 ± 0.016 61.43 ± 7.26 | 21.68 ± 0.32 0.588 ± 0.017 0.131 ± 0.006 0.030 ± 0.002 0.779 ± 0.019 60.36 ± 7.37 | 21.94 ± 0.34 0.607 ± 0.014 0.129 ± 0.006 0.028 ± 0.002 0.807 ± 0.014 51.28 ± 7.13 | 22.01 ± 0.33 0.606 ± 0.014 0.129 ± 0.006 0.028 ± 0.002 0.803 ± 0.012 54.79 ± 7.19 | 22.01 ± 0.30 0.607 ± 0.014 0.128 ± 0.005 0.027 ± 0.002 0.817 ± 0.016 65.65 ± 7.17 | $egin{array}{c} 22.10 \pm 0.31 \\ 0.613 \pm 0.013 \\ 0.126 \pm 0.005 \\ 0.027 \pm 0.002 \\ \underline{0.814} \pm 0.017 \\ \underline{53.81} \pm 7.49 \\ \end{array}$ | | Brain
MS
Images
4 | PSNR ↑ SSIM ↑ MAE ↓ MSE ↓ DSC ↑ HD ↓ | $30.07 \pm 0.00 \\ 0.895 \pm 0.000 \\ 0.028 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.739 \pm 0.000 \\ 22.73 \pm 0.00$ | 29.56 ± 0.00 0.888 ± 0.000 0.030 ± 0.000 0.005 ± 0.000 0.682 ± 0.000 26.23 ± 0.00 | 31.55 ± 0.20 0.909 ± 0.003 0.024 ± 0.000 0.004 ± 0.000 0.774 ± 0.007 22.00 ± 1.30 | 31.57 ± 0.23 0.907 ± 0.003 0.024 ± 0.001 0.004 ± 0.000 0.771 ± 0.007 20.91 ± 1.23 | 32.01 ± 0.19 0.914 ± 0.002 0.023 ± 0.000 0.003 ± 0.000 0.775 ± 0.007 22.38 ± 1.28 | 32.34 ± 0.20 0.915 ± 0.002 0.021 ± 0.000 0.003 ± 0.000 0.777 ± 0.007 21.72 ± 1.16 | 32.40 ± 0.20 0.913 ± 0.002 0.021 ± 0.000 0.003 ± 0.000 0.777 ± 0.007 22.21 ± 1.27 | 32.41 ± 0.20 0.915 ± 0.002 0.021 ± 0.000 0.003 ± 0.000 0.774 ± 0.007 21.28 ± 1.27 | | Brain
GBM
Images | PSNR↑ SSIM↑ MAE↓ MSE↓ DSC↑ HD↓ | $\begin{array}{c} 35.32 \pm 0.00 \\ 0.929 \pm 0.000 \\ 0.017 \pm 0.000 \\ 0.002 \pm 0.000 \\ \underline{0.300} \pm 0.000 \\ \underline{170.44} \pm 0.00 \end{array}$ | 33.60 ± 0.00 0.895 ± 0.000 0.024 ± 0.000 0.005 ± 0.000 0.287 ± 0.000 165.62 ± 0.00 | 35.73 ± 0.13 0.935 ± 0.001 0.015 ± 0.000 0.001 ± 0.000 0.258 ± 0.018 195.52 ± 7.69 | 35.49 ± 0.17 0.940 ± 0.001 0.014 ± 0.000 0.002 ± 0.000 0.253 ± 0.017 189.61 ± 7.64 | 35.86 ± 0.12 0.940 ± 0.001 0.014 ± 0.000 0.001 ± 0.000 0.302 ± 0.019 198.19 ± 7.78 | 35.90 ± 0.14 0.943 ± 0.001 0.014 ± 0.000 0.001 ± 0.000 0.266 ± 0.018 185.14 ± 7.69 | 35.77 ± 0.12 0.937 ± 0.001 0.015 ± 0.000 0.001 ± 0.000 0.286 ± 0.019 196.37 ± 7.74 | 35.79 ± 0.15 0.939 ± 0.001 0.015 ± 0.000 0.001 ± 0.000 0.287 ± 0.017 181.66 ± 7.66 | | 1, 4, 5 $1, 2, 3, 4, 5$ | Rank↓
Rank↓ | $6.3 \pm 1.6 \\ 6.5 \pm 1.3$ | $7.3 \pm 2.0 \\ 7.6 \pm 1.5$ | $4.9_{\pm 1.4}$ $4.9_{\pm 1.5}$ | $4.6 \pm 1.9 \\ 4.5 \pm 1.8$ | $2.9 \pm 1.9 \ 3.1 \pm 1.6$ | $\frac{2.3}{2.7}$ ± 1.6 | $\begin{array}{c} \textbf{3.4} \pm 2.0 \\ \textbf{3.0} \pm 1.8 \end{array}$ | 2.1 ± 1.3
2.0 ± 1.2 | ## Latent Space Regularization Figure 4: Joint representation space and the effect of contrastive learning regularization. Red dots are the observed disease states and arrows connect adjacent transitions. Normalized time is color coded. (A) Without regularization ($\lambda_c = 0$). (B) With contrastive learning regularization ($\lambda_c = 0.01$). ## **Test-Time Optimization** Using the entire history to locally fine-tune the vector field | Table 2 | : Effect of tes | t-time onti | mization | |---------|-----------------|---------------|----------| | Iuoic 2 | . Lilet of tes | of thine opti | umzanon | | _ | Iterations | Learning Rate | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | HD↓ | |---|------------|---------------|-------|-------|-------|-------|-------|--------------| | | N/A | N/A | 22.31 | 0.643 | 0.123 | 0.027 | 0.827 | 51.07 | | | 1 | 10^{-4} | 22.52 | 0.646 | 0.120 | 0.025 | 0.829 | 48.97 | | | 1 | 10^{-5} | 22.36 | 0.643 | 0.122 | 0.027 | 0.827 | 51.02 | | | 1 | 10^{-6} | 22.31 | 0.643 | 0.123 | 0.027 | 0.827 | 51.07 | | | 10 | 10^{-4} | 20.63 | 0.605 | 0.157 | 0.042 | 0.749 | 64.79 | | | 10 | 10^{-5} | 22.59 | 0.646 | 0.119 | 0.025 | 0.829 | 49.92 | | | 10 | 10^{-6} | 22.36 | 0.644 | 0.122 | 0.027 | 0.827 | 51.01 | | | 100 | 10^{-4} | 19.63 | 0.571 | 0.177 | 0.056 | 0.726 | 70.12 | | | 100 | 10^{-5} | 20.92 | 0.614 | 0.152 | 0.040 | 0.759 | 58.76 | | | 100 | 10^{-6} | 22.61 | 0.646 | 0.119 | 0.025 | 0.829 | <u>49.74</u> | ## Ablation Studies | | Tiblation Stadio |--|----------------------------------|-----------------------|----------|------------------------|----------|---|---|-------|-------|-------|-------|-------|-------|-------------------------------------|---------|--------|---------|--------|------------|-------|-------------|--------|-----------|---------|---------|-------|----------------| | 2 | Table 3: Flow field formulation. | $PSNR\uparrow$ $SSIM\uparrow$ $MAE\downarrow$ $MSE\downarrow$ $DSC\uparrow$ $HD\downarrow$ | | | | | | HD↓ | Table 5: Visual feature regularization. Table 6: Contrastive regularization. | | | | | | | Table 7: Smoothness regularization. | | | | | | | | | | | | | | | $f_{ heta}(z_t,t)$ | 22.42 | 0.643 | 0.123 | 0.027 | 0.872 | Table 5: Visual feature regularization. | | | | | | | | rable of | : Contr | astive | regular | izauon | l . | | abic 7. | Sinoot | 1111035 1 | cguiai. | ization | • | | | $f_{ heta}(z_t,t) \ f_{ heta}(z_t)$ | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | $\overline{\lambda_v}$ | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | HD↓ | λ_c | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | HD↓ | λ_s | PSNR↑ | SSIM↑ | MAE↓ | MSE↓ | DSC↑ | $HD\downarrow$ | | Table 4: Latent representation. | | | | 0 | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | 0 | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | 0 | 22.63 | 0.646 | 0.119 | 0.024 | 0.874 | 42.68 | | | | | P <u>-</u> | Table | 4. Laic | int repi | CSCIII | mon. | | 0.001 | 22.65 | 0.658 | 0.118 | 0.024 | 0.872 | 44.27 | 0.001 | 22.63 | 0.646 | 0.119 | 0.025 | 0.872 | 46.23 | 0.001 | 22.38 | 0.649 | 0.123 | 0.027 | 0.870 | 46.91 | | | | PSNR↑ S | SSIM↑ M | AE↓ MS | E↓ DSC↑ | HD↓ | 0.01 | 22.64 | 0.650 | 0.120 | 0.025 | 0.872 | 45.89 | 0.01 | 22.65 | 0.652 | 0.118 | 0.024 | 0.875 | 42.18 | 0.01 | 22.65 | 0.648 | 0.119 | 0.024 | 0.870 | 45.71 | | bottleneck | • | 22.33 | 0.007 0. | .122 0.02 | 26 0.850 | | 0.1 | 22.57 | 0.647 | 0.120 | 0.025 | 0.869 | 50.69 | 0.1 | 22.38 | 0.651 | 0.121 | 0.025 | 0.871 | 45.30 | 0.1 | 22.70 | 0.657 | 0.118 | 0.024 | 0.878 | 47.44 | | all unique
all unique | resolutions
layers | 22.49
22.63 | | .122 0.02
.119 0.02 | | 10.07 | 1 | 22.54 | 0.634 | 0.124 | 0.027 | 0.867 | 48.13 | 1 | 22.25 | 0.644 | 0.121 | 0.025 | 0.868 | 46.85 | 1 | 22.69 | 0.655 | 0.118 | 0.024 | 0.875 | 45.16 |