
A Technical Deep Dive into
Drag Your GAN (DragGAN)

Chen Liu
chen.liu.cl2482@yale.edu

Abstract

This is neither a research article nor a review article. This is an unofficial
technical deep dive into how DragGAN [1] works. Treat this as a blog post.1
When we read the DragGAN paper, we had multiple misunderstandings before we
finally converged to an interpretation that seems convincing. Therefore, we believe
it is beneficial to share our final interpretation to the community, in case anyone
else is also having trouble parsing the methods section of the DragGAN paper.
Note: If you are an expert in this field, you may find this technical deep dive
a complete waste of your time. This article is most suited to people with some
background on deep learning and generative models, but have some difficulty
comprehending the DragGAN methods by directly reading the paper.
Disclaimer: We, authors of this technical deep dive, have not yet consulted the
authors of the DragGAN paper for the technical correctness of our explanations.
The opinions and insights are solely based on our own understanding of the Drag-
GAN paper and they may be wrong. The DragGAN authors shall not be held
responsible for any mistake or misinterpretation in this article, but they shall be
properly cited if you build upon their work in your research.

Contents

1 The DragGAN Madness 2

2 Preliminaries 2

2.1 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . . . . . . 2

2.2 StyleGAN and StyleGAN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Methods of DragGAN 3

3.1 What DragGAN is and What It isn’t . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Unspoken Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Motion Supervision and Point Tracking . . . . . . . . . . . . . . . . . . . . . . . 5

4 Discussion 7

1We would have written a blog post instead if we were more familiar with that. However, typing up a
document on overleaf seems much easier.

Preprint. Under review.

chen.liu.cl2482@yale.edu


1 The DragGAN Madness

Figure 1: Demonstration of DragGAN interface. This is slightly re-made from Fig. 1 and 2 in [1].

DragGAN [1] has become such a big hit recently. The astounding demo from this paper to appear at
SIGGRAPH 2023 has been re-posted through various venues including LinkedIn, Twitter, YouTube,
and has attracted numerous attention. The GitHub page (https://github.com/XingangPan/
DragGAN) has accumulated 13.8 thousand stars within as short as 2 weeks, even though it’s currently
a placeholder with the code to be released in June.

Why are people so excited about this work? The main reason is that it demonstrates a highly
controllable and highly user-friendly interface for image generation. By clicking over a few places on
an image, the users can manipulate the image seamlessly, and the results look as good as magic.

Specifically, the users can provide one or more pairs of (handle, target) points, and DragGAN will be
responsible for “dragging” each handle point to the corresponding target point. As can be observed
from the examples (Figure 1), this process is complicated and profound as it respects the shape,
texture and continuity of the underlying object.

DragGAN ensures the object parts highlighted by the handle points (e.g., the nose and jaw of the lion)
are exactly moved to the desired target locations, and it performs necessary deformations in highly
reasonable manners — no crazy twists or impossible elongations whatsoever. Another amazing
thing is that it performs what the authors referred to as “out-of-distribution image editing” by inferring
contents that do not exist in the original image (e.g., the lion’s teeth and tongue). Furthermore, it
allows the users to optionally provide a binary mask, which indicates the region over which image
editing is allowed.

This technical deep dive aims to closely inspect the methods section of the DragGAN paper, and
explain it to the level of detail that a researcher or student with sufficient practical experience in
deep learning and generative models shall be able to comprehend and implement the method. Due to
laziness, we have not tried on our own, but we believe we shall be able to based on our understanding.

2 Preliminaries

Most of you shall be already familiar with GAN, StyleGAN and StyleGAN2. Please feel free to skip
this section in that case. We do not aim to provide too much additional background beyond what was
mentioned in the DragGAN paper.

2.1 Generative Adversarial Networks (GANs)

As a quick recap, the vanilla GAN [2] consists of a generator G and a discriminator D. G generates
an image of shape H ×W × 3 from a d-dimensional noise vector. The discriminator takes in both the
real images and the fake, generated images, and tries to distinguish them. G and D play a two-player
minimax game, where the former tries to fool the latter while the latter tries to catch the former. If
trained properly, G shall eventually learn to generate highly realistic images.

More details can be found in the GAN paper [2].

2

https://github.com/XingangPan/DragGAN
https://github.com/XingangPan/DragGAN


2.2 StyleGAN and StyleGAN2

An overall understanding StyleGAN/StyleGAN2 [3, 4] is slightly important because DragGAN is
architecturally based on StyleGAN2. On the other hand, it is not critical to understand them in great
details if your goal is to understand the methods section of DragGAN.

The following section is quoted from the DragGAN paper that describes the relevant background on
StyleGAN/StyleGAN2:

In the StyleGAN2 architecture, a 512 dimensional latent code z ∈ N (0, I) is
mapped to an intermediate latent code w ∈ R512 via a mapping network. The
space of w is commonly referred to as W . w is then sent to the generator G to
produce the output image I = G(w). In this process, w is copied several times and
sent to different layers of the generator G to control different levels of attributes.
Alternatively, one can also use different w for different layers, in which case the
input would be w ∈ Rl×512 = W+, where l is the number of layers. This less
constrained W+ space is shown to be more expressive. As the generator G learns a
mapping from a low-dimensional latent space to a much higher dimensional image
space, it can be seen as modelling an image manifold.

Figure 2: Comparison between vanilla GAN, StyleGAN and StyleGAN2. This is slightly re-made
from Fig. 1 in [3] and Fig. 2 in [4].

The key difference between a vanilla GAN and a StyleGAN is illustrated in Figure 2(a) and (b).
While the former directly decodes a noise vector z over a series of convolutional blocks into a
generated image, the latter first transforms z into an intermediate latent vector w, and then decodes w
progressively over several resolutions. The image resolution progressively increases from 4× 4 all
the way to 1024× 1024.

In StyleGAN2, the authors reworked the design of the synthesis network (Figure 2(c)), and isolated
the adaptive instance normalization (AdaIN) operations into two consecutive parts. After some
recombination, they introduced the new fundamental building block termed the “style blocks” (gray
box in Figure 2(d)). The outputs from each style block is referred to as the feature map at that
particular resolution.

More details can be found in the StyleGAN and StyleGAN2 paper [3, 4].

3 Methods of DragGAN

3.1 What DragGAN is and What It isn’t

Before we dive deep into the details, here are some high-level summaries on the DragGAN method:

3



• It is not a new architecture. It is not a new training technique. It is a latent space manipula-
tion technique on a pre-trained StyleGAN2.

• This manipulation technique requires some optimization, but not on the model itself, so it is
not a method for “training”. The optimization is performed on the feature map.

• In short, DragGAN proposes a technique to manipulate the feature map based on user
input, and the manipulated image is generated by the pre-trained, weight-frozen StyleGAN2
using the manipulated feature map.

• Notably2, the latent space manipulation is not performed directly on the feature map, but
rather performed indirectly via optimization on the latent code (i.e., the vector serving as
the input to StyleGAN2). The latent code is the only thing that DragGAN directly modifies.

Up to this point, there has been nothing difficult to comprehend. Now comes the harder part — the
juicy meat of DragGAN — motion supervision and point tracking.

3.2 Unspoken Assumptions

Before talking about motion supervision and point tracking, we want to point out some major
assumptions that the authors used without much explanation. These assumptions are implied to
be true based on the fact that DragGAN works so well, but we nonetheless believe that it helps
understanding if we point them out explicitly.

1. The output image and the intermediate feature maps have a strong pixel-by-pixel correspon-
dence if they are resampled to the same resolution.
This is a key assumption without which the entire DragGAN method is completely non-
sense. This assumption can be shown to be true by analyzing the operations (convolution,
upsampling, adaptive instance normalization) between the feature maps and the output
image.

2. The pre-trained StyleGAN2 has a good enough latent manifold such that a slightly and
smoothly manipulated feature map shall result in a reasonable and realistic image.
This ensures the manipulated output image looks reasonable, and from a hindsight it seems
true. However, we are unsure whether a more mathematically rigorous statement of this
assumption can be / has been proven, since we are not experts in this topic.

Figure 3: An overly simplified sketch of the motion supervision and point tracking procedure.
Top row are images and bottom row are feature maps. This figure uses materials from Fig. 9 in [1].

2Many thanks to an anonymous friend for pointing this out. This bullet point is added for clarification.

4



3.3 Motion Supervision and Point Tracking

Purpose of motion supervision and point tracking In plain language, motion supervision and
point tracking aims to manipulate the feature map (defined in section 2.2) such that the region around
the handle points in the original feature map are “smoothly migrated” to the region around the
corresponding target points in the manipulated feature map. An overly simplified sketch is provided
in Figure 3. This sketch shall only be used for high-level conceptual understanding.

Why this achieves the purpose Prior to manipulation, the feature map is resampled to the same
height/width as the output image using bilinear interpolation. Due to the first unspoken assumption,
the object parts around the handle points in the original image will be moved to the target points in
the manipulated output image, achieving the key purpose of DragGAN. Due to the second unspoken
assumption, the manipulated output image will be reasonable and realistic.

Figure 4: The manipulated feature map is the output of the 6th style block. StyleGAN2 style
blocks starts from a 4× 4 input c1 and ends at a 1024× 1024 feature map, with height/width doubled
each block downward. The 6th style block shall have resolution 256 × 256. Please note that this
figure only shows the heights/widths of the feature maps while not showing the channel dimension.
This figure is modified from the previous figures.

Which feature map to manipulate As we have previously mentioned, the output of each style
block of StyleGAN2 is a distinct feature map at that respective resolution. Which feature map does
DragGAN manipulate? Section 3.2 of the DragGAN paper answers this question: it is the feature
map at the 6th style block, which corresponds to the 256 × 256 resolution. This is illustrated in
Figure 4. The DragGAN authors claimed this feature map shows a good trade-off between resolution
and discriminativeness.

Details of motion supervision Let us denote the handle points as {pi} and the target points as
{ti}, with i ∈ [n] if we have a total of n (handle, target) pairs. Let us further denote the points inside
the circle centered at pi with radius r1 as Ω1(pi, r1). Motion supervision is an iterative optimization
process that manipulates the feature map F such that the region around each pi is migrated to the
region around ti.

Probably to enforce smoothness and continuity on the feature map, instead of a brutal cut-and-paste or
copy-and-paste from Ω1(pi, r1) to Ω1(ti, r1), the DragGAN authors decided to use a gentler method.
They first find the unit vector pointing from pi to ti:

di =
ti − pi

||ti − pi||2
(1)

5



then they define the following loss to guide the iterative update on the feature map:

L =

n∑
i=0

∑
qi∈Ω1(pi,r1)

||F(qi)− F(qi + di)||1 + λ||(F− F0) · (1−M)||1 (2)

The second component is very easy to understand. M is the binary mask defining the editable area of
the image3. ||(F− F0) · (1−M)||1 simply enforces a constraint on the region outside the editable
area to demotivate any change of the feature map. From the first unspoken assumption, we can deduce
that, over the regions where the feature map is not changed, the generated image shall remain the
same (at least shall not be changed by much) —- this is indeed supported by the DragGAN results.

The first component is a bit more complicated. F(qi) denotes the feature map at point qi, which
is within the circular neighborhood of the handle point pi. F(qi + di) denotes the feature map at
point qi + di, which is qi shifted toward ti by a unit distance. ||F(qi)−F(qi + di)||1 encourages the
feature map to be similar at the two specified points. However, the authors further specified that the
gradient shall be detached at F(qi), which means that the feature map can only be updated at qi + di
but not at qi. This ensures a uni-directional migration of the feature map content from qi towards ti
but not the other way around.

Another tiny yet important detail to point out is that while the target points are fixed once given by
the users, the handle point pi is actually moved after each optimization step. This also explains why
the first component is written as ||F(qi) − F(qi + di)||1 instead of ||F0(qi) − F(qi + di)||1. The
equation emphasizes that the motion supervision process iteratively migrates the feature map contents
around the handle point at the current optimization step (not the initial handle point) towards
the target point.

Will motion supervision cause feature duplication At first we thought this loss function will
result in two identical copies of F(Ω1(pi, r1)) at Ω1(pi, r1) and Ω1(pi + di, r1). However, at closer
inspection, we believe this will not happen. The main reason is that, although the feature map at
qi cannot be updated due to the detached gradient when the loss is back-propagated for qi, it will
nevertheless be modifiable when the loss is back-propagated for a different q′i ∈ Ω1(pi, r1). Excuse
the abuse of notation, as the original paper did not need to subset different points inside Ω1(pi, r1).

Well, one may ask, here we only show that Ω1(pi, r1) can be modified, but why will it be modified?
We further explain this with an illustration (Figure 5). The red and blue circles represent Ω1(pi, r1)
and Ω1(pi + di, r1) respectively — using the same convention as Fig. 3 in [1]. Let’s look at 3 pixels:
a, b and c. When we perform motion supervision on b, it will encourage b and c to become similar,
and since b is not modifiable, this will encourage c to look like b. Similarly, b will look like a when
motion supervision is performed on a. As a result, the feature map content at (a, b) will be propagated
to (b, c). This behavior is further ensured by the fact that di is a unit vector which means Ω1(pi, r1)
and Ω1(pi + di, r1) have significant overlap.

Figure 5: Illustration of feature map propagation. We show how the feature map content around
Ω1(pi, r1) is propagated to Ω1(pi + di, r1) under motion supervision. However, this is a conceptual
illustration, while the precise pixel-to-pixel propagation cannot be guaranteed.

3In case the binary mask is not specified by the user, we believe an all-ones binary mask is implied.

6



One may further ask, what if motion supervision is performed on a before it is performed on b? Will
that make all three pixels blue? The answer is no. In reality, the motion supervision is performed
simultaneously on all such pixels during back-propagation, after the loss is computed for all pixels
inside the circle. Hence there is no need to worry about this kind of “pollution”.

In summary, the feature map contents around the original handle point will migrate towards the target
point after each optimization step, and after sufficient number of optimization steps they will reach
the target point. The potential “feature duplication” is prevented due to aforementioned reasons.

However, this statement is only true if there is a way to track the points along the optimization process,
updating the location estimation for pi at each optimization step. Even though the loss function
encourages the propagation from each qi to qi + di, the precise pixel-perfect propagation cannot
be guaranteed. This leads us to the point tracking method.

Details of point tracking As we mentioned above, the handle points are “updated” at each
optimization step. More precisely, after each optimization iteration that manipulates the feature map,
we need to re-localize the handle points in order to proceed to the next iteration. This re-localization
job is performed by point tracking.

Unlike some prior works that track the points in the image space, the DragGAN authors decided
to track the points in the feature space, again leveraging the first unspoken assumption. Let us
denote the points inside the square patch4 centered at pi with side length of 2 r2 as Ω2(pi, r2). Let
us additionally denote (beyond the notation of the DragGAN paper) pi at the k-th iteration as pki ,
and the feature map at the k-th iteration as Fk. We can (using a slightly different notation from the
DragGAN paper) define the following rule for point tracking:

pk+1
i = argmin

qi∈Ω2(pk
i ,r2)

||Fk+1(qi)− F0(p
0
i )|| (3)

This is a simple nearest-neighbor search over the square patch that looks for the point which is most
similar to the initial feature map at the initial handle point. While we could potentially replace F0(p

0
i )

with Fk(p
k
i ), we believe that the authors of DragGAN used the current formulation to mitigate drift

error.

4 Discussion

DragGAN is a fascinating work that has recently gained remarkable popularity. As much as we wish
everyone could read the DragGAN paper with zero effort, we suspect that might be too good to be
true. Since we, researchers in an adjacent area, found it a bit challenging to parse the technical details
in the first pass and indeed spent significant time self-correcting our interpretation of the DragGAN
methods, we believe it may be valuable to pass on our interpretation to the broader audience who find
that paper interesting. We will be very glad if we can help out at least a few peers who would love to
dig into the technical details that is not covered by the few Medium posts available online.

Please don’t forget that we are not the authors of DragGAN, and this article is by no means an official
interpretation of the paper. Please don’t hesitate to point out mistakes and misinterpretations. If
you want to cite DragGAN, please cite the correct paper using the format mentioned in their official
GitHub repository: https://github.com/XingangPan/DragGAN.

References
[1] Pan, X. et al. Drag your gan: Interactive point-based manipulation on the generative image

manifold. ACM SIGGRAPH 2023 Conference Proceedings (2023).

[2] Goodfellow, I. et al. Generative adversarial networks. Communications of the ACM 63, 139–144
(2020).

4Or equivalently, you can view this as a L1 circle. The authors probably thought of it this way. Otherwise
why would they use the radius symbol r for definition?

7

https://github.com/XingangPan/DragGAN


[3] Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
4401–4410 (2019).

[4] Karras, T. et al. Analyzing and improving the image quality of stylegan. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 8110–8119 (2020).

8


	The DragGAN Madness
	Preliminaries
	Generative Adversarial Networks (GANs)
	StyleGAN and StyleGAN2

	Methods of DragGAN
	What DragGAN is and What It isn't
	Unspoken Assumptions
	Motion Supervision and Point Tracking

	Discussion

