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Abstract

Our objective is to develop a comprehensive quantitative benchmark designed to
impartially assess deep learning techniques using open cell segmentation datasets.
Our goal is to establish a standard similar to “CIFAR” or “ImageNet” in the realms
of histology and cellular biology. So far, we have examined seven datasets, with a
range of 30 to 7,000 images and encompassing between 7,000 to 1.2 million cells.
Two of the largest datasets have been integrated into our benchmark. We have
evaluated ten deep learning methods, selecting two for their ease of use in inference
processes. We plan to further refine and expand this project and will ultimately
launch a website to facilitate widespread access and community involvement.

1 Introduction

There is a significant lack of publicly available datasets and common tasks in cell image segmentation
to benchmark existing or new methods, unlike fields such as natural image classification (consider
MNIST [1], CIFAR [2], or ImageNet [3]). As a result, it is difficult for researchers to run extensive
comparisons and/or to build upon the work of others, ultimately impeding the progress in this field.

To encourage open collaboration and ensure transparency and reproducibility, we propose an online
system that brings together a list of publicly available datasets to form a large-scale quantitative
evaluation benchmark. Our system allows researchers or developers to register and submit their
models for various tasks. It also hosts a leaderboard that showcases the performance of different
models on these open datasets. Users will be able to browse and filter images for visualization and can
also compare different models based on tasks, metric, and performances. Our system also encourages
user contribution by uploading new methods that users develop for evaluation and benchmarking.

We envision that our benchmark can be valuable to people from various backgrounds.

1. For cellular biologists and similar scientists, our project aims to provide a unified platform
to help them find the best cell segmentation models for their research projects, according to
the properties of their data, and to help them easily install and deploy the models.

2. For researchers who want to follow the latest developments, we provide an extensive
and fair comparison of the methods on a variety of datasets.

3. For researchers developing cell segmentation models, we provide a platform to compare
their models fairly with existing ones and promote their work. In the long run, we hope
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that all new research on cell segmentation will use our platform for a transparent and
comprehensive evaluation of their model.

4. For beginners interested in this field, we provide a clear and friendly introduction,
showcasing the state-of-the-art models and pointing them to background and tutorials.

For this course project, we further limit the scope and focus on the following scenarios.

1. We focus on instance segmentation as we believe it is more important and influential than
semantic segmentation for the context of cell images.

2. We exclusively evaluate the generalization ability of the models. To that end, we gather
models whose pretrained weights are available on public repositories and evaluate them on
the same set of previously unseen dataset that we collect.

3. We manually run the evaluation without hosting an automated service for that purpose.

2 Architecture

2.1 Database

In the following section, we describe the tables, relationships, and constraints of our database.

2.1.1 Tables

Our current design incorporates 7 tables in the database, as listed below.

The following visualization techniques are used for better illustration.

1. The keys and corresponding data types are specified.

2. Tables with names colored gray are weak entities.

3. For clarity, the referenced foreign keys are color-coded. Their corresponding primary keys
are indicated with matching colors.

cell_image
key dtype

ID string
cell_type string
imaging_modality string
instance_seg bool
task_ID string
image_URL string
label_URL string

task
key dtype

ID string
name string
num_images int
description string

model
key dtype

ID string
developer_ID string
name string
backbone string
learning_method string
num_params int
paper_URL string
code_URL string
upload_time date

prediction
key dtype

model_ID string
task_ID string
cell_image_ID string
prediction_URL string

performance
key dtype

model_ID string
task_ID string
metric_name string
score float

developer
key dtype

ID string
email string
name string
pass_hash string

metric
key dtype

name string
description string

2.1.2 Relationships

1. cell_image vs. task is a many-to-many relationship, with ‘task_ID’ being the foreign key in
cell_image.
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2. task vs. performance is a one-to-many relationship, with ‘task_ID’ being the foreign key in
performance.

3. model vs. performance is a one-to-many relationship, with ‘model_ID’ being the foreign
key in performance.

4. metric vs. performance is a one-to-many relationship, with ‘metric_name’ being the foregin
key in performance.

5. model vs. developer is a many-to-one relationship, with ‘developer_ID’ being the foreign
key in model.

2.1.3 Constraints

1. Every ‘ID’ in each table should be unique.

2. ‘name’ in the developer table cannot be null.

3. ‘pass_hash’ in the developer table should have a length constraint (more than a certain
number) to ensure a hashed security password.

4. ‘num_images’ in the task table should be checked to make sure it is larger than some
threshold number.

Finally, the ER digram is shown in Figure 1. It specifies the entity sets, the relationships, whether the
entities are strong or weak entities, the participation, etc.

Figure 1: The ER diagram. Underlined keys are primary keys. Double-boxes indicate weak
entities. Single-ended arrows (→) indicate one-to-many relationships, pointing from the “many”
side to the “one” side. Double-ended arrows (↔) indicate many-to-many relationships. Double-line
arrows (⇒) indicate total participation.

2.2 Tech Stack

The architecture of our project is as follows.
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For the backend, we used Python. Python is a good choice because of our team’s experience and its
many libraries for machine learning and data processing. We used a micro-web framework, Flask, to
listen on frontend calls before serving data from backend to frontend. Flask is a lightweight, easy-to-
use Python plugin, especially if we are using a SQL-based database. We also used PostgreSQL as our
DBMS for storing cell images, task and metrics information.

For the frontend, we used HTML, CSS and JavaScript, which could integrate with the React
framework. We believe this is a good choice given how well documented the framework is and our
team’s experience with react development. We will require an SQL database for managing user info,
cell images, tasks, models, and other information needed.

We use Git for version control and team collaboration. We used localhost to host our website. We
have not yet deployed the website through any third-party hosting service.

3 Key Features

3.1 Leaderboard Page

This is a page where users compare how each model performs in each metric. Data are transcribed
from numeric to visual information to make the comparison easier. We also normalized the score for
each metric to make the visualization more appealing. Users can sort the dataset of models based on
specific metric name (Figure 2).

By far, on the dataset side, we have included two datasets with instance segmentation ground truth
labels, both of which are among the datasets with the most number of images. The datasets are
described in detail in Section 4.1.

On the model side, we have incorporated two machine learning methods with three pre-trained
checkpoints in total. The methods are described in detail in Section 4.2.

Figure 2: The leaderboard Page shows which methods are performing well on which tasks in a
visually intuitive manner. Developers can showcase their methods by competing and outperforming
others. Adopters can find their go-to methods to try on their tasks. Researchers can study model
generalization as well as other intriguing topics.

3.2 Cell Page

In the database, each cell image is tagged by the corresponding cell type. Some examples are: lung
cells, pancreas cells, lymph node cells, HeLa cells, among many others. Users can query which cell
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type they want to display on the page. Users can also slide a counter to adjust the number of images
displayed on the web page (Figure 3).

Figure 3: The Cell Page helps the users better
understand the data, grouped by different cell
types (shown in the drop-down menu).

Figure 4: The Task Page helps the users better
understand the data, grouped by different tasks
(shown in the drop-down menu).

3.3 Task Page

Similarly to the cell page, on the task page users can query which task they want to display. Users
can also slide a counter to adjust the number of images displayed on the web page (Figure 4). By far,
we have included two tasks: cell (instance) segmentation and nuclei (instance) segmentation. The
latter only segments the nucleus of each cell, whereas the former segments the cytoplasm, i.e., the
border of the cell membrane.

Users can select a set of models and ground truth. The database, by performing a ‘join’ operation
on cell images and tasks, generates a table of different models that infer the same image. This
functionality gives the user a direct comparison of how different models perform on the same image.

3.4 Interactive Comparison

Users can choose multiple methods for side-by-side comparison with ground truth segmentation maps.
Visualization results are shown in Figure 5. The side-by-side comparison is a helpful visualization
for the users to qualitatively examine the selected methods on selected images.

As mentioned previously, the datasets and models included are further described in Section 4.1 and
Section 4.2, respectively.

3.5 Participation Page

Currently, we envision the following manners for users to participate:

1. They may download the models and/or datasets and try them out on their own.
2. They may upload their own datasets to the database.
3. They may upload their method to the database.

As a starting point, we would like to host the website in a Kaggle-like manner. For researchers who
want to set up their method to compete against existing ones, they shall download the datasets (through
a link on our website redirecting them to the official data providers) and upload their inference results
to us. We will then evaluate the performance and update the pages, including but not limited to the
leaderboard.
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Figure 5: The Interactive Comparison Page provides a venue for qualitative comparison of selected
methods on selected cell images.

Figure 6: The Participation Page allows the users to register and further utilize the models and
datasets hosted.

The registration and login process on our website are shown in Figure 6.
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4 Description of Data

4.1 Datasets benchmarked

We searched for publicly available datasets for cell segmentation and further narrowed it down to two
datasets with the most number of images. The complete list of candidates can be found in Table 1.

DynamicNuclearNet contains five mammalian cell lines (NIH-3T3, HeLa-S3, HEK293, RAW
264.7, and PC-3). “We performed nuclear labeling via prior transduction with H2B-iRFP670 (Hela,
RAW 264.7), H2B-mClover (HEK293, NIH/3T3), and H2B-mCherry (PC-3). The medium was
removed and replaced with imaging medium (FluoroBrite DMEM (Invitrogen) supplemented with 10
mM HEPES (Sigma-Aldrich), 10% FBS (Gibco), 2 mM L-glutamine (Gibco)) at least 1 hour before
imaging. We imaged cells with a Nikon Ti-E or Nikon Ti2 fluorescence microscope.”

TissueNet contains cells from Pancreas, Breast, Tonsil, Colon, Lymph, Lung, Espophagus, Skin
and Spleen. It uses cell-type-specific staining for nuclei and membrane/cytoplasm respectively (one
staining for nuclei and one staining for cytoplasm).

Table 1: Datasets we explored for the benchmark. The ones included in this course project are bolded.

Dataset Name # images Image size # cells Staining Pub. year Pub. venue Link

CryoNuSeg [4] 30 256× 256 7,596 H&E 2023 Computers in
Biology and
Medicine

https://www.sciencedirect.
com/science/article/pii/
S0010482521001438

DigestPath [5] 682 2000× 2000 14,859 H&E 2022 Medical Image
Analysis

https://www.sciencedirect.
com/science/article/pii/
S1361841522001323

DynamicNuclearNet
Segmentation [6]

7,084 512 × 512 606,455 Fluorescence 2023 arXiv https://www.biorxiv.org/
content/10.1101/803205v4.
full

EVICAN [7] 4600 1024× 1024 26,000 CellMask/DAPI 2020 Bioinformatics https://academic.oup.com/
bioinformatics/article/36/
12/3863/5814923

LIVECell [8] 5,239 1408× 1040 1.6 M stain-free 2021 Nature
Methods

https://www.nature.
com/articles/
s41592-021-01249-6

NuInsSeg [9] 665 256× 256 30,698 H&E 2023 arXiv https://arxiv.org/abs/2308.
01760

TissueNet [10] 7,022 512 × 512 1.2 M H&E 2021 Nature
Biotechnology

https://www.nature.
com/articles/
s41587-021-01094-0

4.2 Models evaluated

We searched for publicly available models for cell segmentation and further narrowed it down to two
models that provided pretrained weights. The complete list of candidates can be found in Table 2.

The models we included are listed below.

1. LACSS with its publicly accessible weights pretrained on the ‘LiveCell’ dataset.
2. StarDist with 2 sets of pretrained weights, trained on ‘2D fluorescent images’ and

‘2D H&E images’ respectively.

For this project, we incorporated a total of three candidate models if we count models with different
weights as distinct candidate models.

4.3 Evaluation metrics

We used the following quantitative metrics to evaluate the performance of the models.

Dice Coefficient measures the similarity of two binary maps. It ranges from 0 to 1, with 0 being
the worst and 1 being the best.

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y |
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Table 2: Models we explored for the benchmark. The ones included in this course project are bolded.

Model Name Task Pub. year Pub. venue Weights? Pub. Link Code Link

2DCellSeg [11] instance seg. 2018 BMC
Bioinformatics

✕ https://
bmcbioinformatics.
biomedcentral.com/
articles/10.1186/
s12859-018-2375-z

Not Found

3DCellSeg [12] instance seg. 2022 Scientific
Reports

✓ https://www.nature.
com/articles/
s41598-021-04048-3

https://github.
com/AntonotnaWang/
3DCellSeg

CellPose [13] instance seg. 2020 Nature
Methods

✓ https://www.nature.
com/articles/
s41592-020-01018-x

https://github.com/
mouseland/cellpose

CellSeg [14] semantic seg. 2022 BMC
Bioinformatics

✓ https://www.ncbi.nlm.
nih.gov/pmc/articles/
PMC8767664/

https://michaellee1.
github.io/
CellSegSite/index.
html

CUTS [15] semantic seg. 2024 MICCAI ✕ https://arxiv.org/abs/
2209.11359

https://github.com/
ChenLiu-1996/CUTS

DeepCeNS [16] instance seg. 2021 IJCNN ✕ https://ieeexplore.
ieee.org/document/
9533624

Not Found

DiffKillR [17] instance seg. 2024 arXiv ✕ https://arxiv.org/abs/
2410.03058

https://github.com/
KrishnaswamyLab/
DiffKillR

Edge Enhancement [18] semantic seg. 2022 IEEE EMBC ✕ https://ieeexplore.
ieee.org/stamp/stamp.
jsp?arnumber=9871026

https://github.com/
SAIL-GuoLab/Cell_
Segmentation_and_
Tracking

LACSS [19] instance seg. 2023 Communications
Biology

✓ https://www.nature.
com/articles/
s42003-023-04608-5

https://github.com/
jiyuuchc/lacss

StarDist [20] instance seg. 2018 MICCAI ✓ https://arxiv.org/abs/
1806.03535

https://github.com/
stardist/stardist

WSISPDR [21] instance seg. 2019 MICCAI ✓ https://arxiv.org/pdf/
1911.13077.pdf

https://github.com/
naivete5656/WSISPDR

Intersection over Union (IoU) is defined very similarly to the Dice coefficient, with the same
dynamic range.

IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

Hausdorff Distance (HD) measures the distance between two binary maps. It ranges from 0 to
infinity — though technically it is capped by the size of the image. Unlike the other two metrics, for
HD lower is better.

HD(X,Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}
,

where d is any distance measure, typically the L2 distance.

Since these metrics are designed for binary segmentation, we made the following adaptations to
meaningfully evaluate multi-cell instance segmentation.

For each image, we iterate over all ground-truth cell masks, and for each cell mask, we compute these
metrics with each individual cell mask from the prediction (generated by a candidate model). Among
all (x, y) pairs, we choose the best score and take the average across all masks. Formally, we define
mean Dice coefficient, mean IoU and mean HD as follows.

mDice(X,Y ) =
1∑

y∈Y 1

∑
y∈Y

{
max
x∈X

Dice(x, y)

}

mIoU(X,Y ) =
1∑

y∈Y 1

∑
y∈Y

{
max
x∈X

IoU(x, y)

}

mHD(X,Y ) =
1∑

y∈Y 1

∑
y∈Y

{
min
x∈X

HD(x, y)

}
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5 Technical Challenges

For interactive comparison, we were initially having trouble maintaining a consistently appealing
visualization because the range of the metrics are so different cross metrics. We then rescaled
Hausdorff Distance within each metric so they are visually comparable.

Some of the database operations are too complicated to operate with a single-shot query. Therefore,
for some queries, e.g., the interactive comparison page, we decompose the large query to few
subqueries to leverage the flexibility of Python. We also delegated some trivial operations like sorting
to the frontend to reduce communication and query overhead.

We did not sanitize user inputs so there might be vulnerability for SQL injection.

We initially did not include prediction table which later was added because we wanted to interactively
compare prediction results by different models.

6 Future Work

Inclusion of more datasets and models The first step is obviously to extend the project to more
datasets and models. For models, we aim to include all publicly available models with pretrained
weights. For datasets, we plan to start by including all publicly available datasets of H&E staining,
and later expand to other imaging modalities and staining types. Eventually, it will be great if we can
build the most comprehensive benchmark in this field.

Upgrade of evaluation script The current inference code is very slow to execute. Running
7,000 images on a model takes more than a day. This may be related to the double for-loop in the
computation of mDice, mIoU, and mHD, where we may want to find a more efficient implementation.

More metrics and visualization In the future we may explore additional metrics and visualizations
of cell segmentation results, including but not limited to entropy and mutual information
measures [22].

Hosting automatic evaluation One potential mega-upgrade is to set up a service on the cloud that
automatically runs inference and evaluation when participants submit their own methods. This would
be a nice feature to have when most other aspects are mature enough.
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